

DAVIDSON LABORATORY

Report SIT-DL-70-1428

June 1970

A MODEL STUDY OF THE HYDRODYNAMIC CHARACTERISTICS OF A SERIES OF PADOLE-WHEEL PROPULSIVE DEVICES FOR HIGH-SPEED CRAFT

prepared for

Department of Defense under &Contract DAAE-07-69-0356

(Project Themis)

This document has been approved for public release and sale; its distribution is unlimited. Application for copies may be made to the Defense Documentation Center, Cameron Station, 5010 Duke Street, Alexandria, Virginia 22314. Reproduction of the document in whole or in part is permitted for any purpose of the United States Government.

DAVIDSON LABORATORY

Stevens Institute of Technology Castle Point Station Hoboken, New Jersey 07030

Report SIT-DL-70-1428

June 1970

A MODEL STUDY OF THE HYDRODYNAMIC CHARACTERISTICS OF A SERIES OF PADDLE-WHEEL PROPULSIVE DEVICES FOR HIGH-SPEED CRAFT

by

Gilbert A. Wray

and

James A. Starrett

prepared for
Department of Defense
under
Contract DAAE-07-69-0356
(DL Project 3514/406)

This document has been approved for public release and sale: its distribution is unlimited. Application for copies may be made to the Defense Documentation Center, Cameron Station, 5010 Duke Street, Alexandria, Virginia 22314. Reproduction of the document in whole or in part is permitted for any purpose of the United States Government.

Approved

1. Robert Ehrlich, Manager Transportation Research Group

ABSTRACT

This report covers an investigation of the hydrodynamic characteristics of a series of scale models of paddle wheels with fixed radial blades, designed for speeds in excess of 20 knots.

The results indicate that a six-bladed wheel has higher propulsive efficiency and thrust than a twelve-bladed wheel. Peak efficiency is in the neighborhood of 41 percent and occurs at slip values of 30 to 40 percent. Thrust increases with immersion depth, within the range tested (16 percent of the wheel diameter immersed). There is a slight break in the thrust curve over a span of 10-percent slip, after which the thrust again increases with increasing slip.

There is evidence of scale distortion, and it is felt that the present model, with a scale factor of 8.5 to 1, may have been too small.

Keywords

Hydrodynamics Amphibians Paddle Wheels Propulsion

R-1428

CONTENTS

Abstract	iii
list of Figures	vii
flomenclature	ix
BACKGROUND AND INTRODUCTION	1
OBJECTIVES OF THIS PROGRAM	5
ANALYS S	7
Wheel Dynamics	7 10
MODEL AND APPARATUS	13
Paddie-Wheel Model	13 14 14
Water-Channel Speed Measurement	16
TEST PROGRAM AND TEST PROCEDURE	17
FORMULAS FOR DATA ANALYSIS	19
Method 1	19 20
RESULTS	21
PREDICTION OF PROTOTYPE PERFORMANCE	25
CONCLUSIONS	29
RECOMMENDATIONS	31
REFERENCES	33
APPENDIX A	35
APPENDIX B	39
FIGURES 1-52	. 1 14

LIST OF FIGURES

1.	Model Paddle Wheel with Fixed Radial Blades and End Plates 63
2.	Paddle Wheel Test Assembly Installed in Water Channel 64
3.	Davidson Laboratory Free-Surface Variable-Pressure Water Channel
4.	Recording Equipment for Wheel Thrust and Torque, and Wheel Speed Controller
5-10.	Wheel Thrust Versus Wheel Speed for Various Advance Velocities (Vo), for a 6-blade and 12-blade Wheel with a Blade immersion Depth of 0.80 inch, 0.50 inch and 0.30 inch 67-68
11-13.	Composite of Data Presented in Figures 5 through 10: Effect of Number of Blades and Blade Immersion Depth on Wheel Thrust, for an Advance Velocity (Vo) of 7.7 fps, 5.4 fps, and 4.6 fps (the first number by each curve indicates the number of blades; the second, the immersion depth in inches)
14-19.	Wheel Torque Versus Wheel Speed and Froude Number for Various Advance Velocities (V_0), for a 6-blade and 12-blade Wheel with a Blade immersion Depth of 0.80 inch, 0.50 inch and 0.30 inch
20-25.	Thrust Versus Effective Slip for Various Advance Velocities (V_0), for a 6-blade and 12-blade Wheel and a Blade Immersion Depth of 0.80 inch, 0.50 inch, and 0.30 inch 82-87
26-31.	Propulsive Efficiency Versus Wheel Speed and Froude Number for Various Advance Velocities (V _O), for a 6-blade and 12-blade Wheel with an Immersion Depth of 0.80 inch, 0.50 inch, and 0.30 inch
32-37.	Propulsive Efficiency Versus Effective Slip for Various Advance Velocities (V_0), for a 6-blade and 12-blade Wheel with a Blade Immersion Depth of 0.80 inch, 0.50 inch, and 0.30 inch
38-43.	Wheel Thrust and Torque Coefficients (K_T, K_Q) Versus Effective Slip for Various Advance Velocities (V_O) , for a 6-blade and 12-blade Wheel with an Immersion Depth of 0.80 inch, 0.50 inch, and 0.30 inch

R-1428

List of Figures (cont'd)

44-49.	Wheel Thrust and Torque Coefficients (K_T,K_Q) Versus Wheel Speed and Froude Number for Various Advance Velocities (V_O) , for a 6-blade and 12-blade Wheel With a Blade immersion Depth of 0.80 inch, 0.50 inch, and 0.30 inch	106-111
50.	Drag Versus Advance Velocity for a Prototype Vehicle with a Planing Huil	112
51.	Reduced Drag Curve of Prototype Vehicle with Some Model Test Data Shown for Performance Matching	113
52.	Simplified Concept Drawing of a High Speed Amphibious Vehicle Utilizing a Paddle Wheel Propulsion System	114

NOMENCLATURE

D	outside diameter of paddle wheel
Fr	Froude number , \sqrt{gD}
KQ	torque coefficient
K _T	thrust coefficient
N	rotation speed of wheel (rpm)
Q	torque
Ţ	thrust of paddle wheel
V	relative velocity between water and blade tip speed (i.e., blade tip speed minus advance velocity of vehicle)
٧ a	inlet or advance velocity (knots)
v _o	inlet or advance velocity (ft/sec)
v 1	water velocity at wheel blade
۸³	exhaust velocity
b	span (width) of blade
d	blade immersion , $\frac{D}{2}$ - h
g	gravitational constant
h	height of wheel axis above free water surface
m	mass flow rate of water
n	rotation speed of wheel (rps)
r	effective radius to midpoint of blade, $(\frac{D}{2} + h)$ 1/2
s _r	siip , i- λ_1

R-1428

Subscripts

- m model properties
- p prototype properties

Greek Letters

• Np propulsive efficiency

 λ_1 advance ratio

ρ mass density of water

 θ angle included by i/2 immersed arc at radius r, $\cos \theta = \frac{h}{r}$

BACKGROUND AND INTRODUCTION

Historically, the use of paddle wheels of one form or another, to propel a vessel, can be traced back to the days of the Egyptian and Roman Emplres. The use of paddle-wheel boats was first recorded in 1472, in the thesis "De Re Militari," by R. Valturius.

With the invention of the steam engine and later the diesel engines -both of which were low-speed devices and hence well suited to then current
designs -- the state of the art progressed. By the 1880's the wheel designs
had reached a high state of development. A 246-ft long vessel of the
BELLE type, built for use on the Thames River, achieved a measured peak
propulsive efficiency of almost 60 percent, at a speed of 12 knots over a
measured mile. 1,2,3 The cross-channel packets of 1880-1890 were paddle
propelled, and two of these ships, the PRINCESS HENRIETTA and the
PRINCESS JOSEPHINE, which were 300-ft long, attained measured-mile speeds
of 21 knots.

Studies of paddle wheel-propelled vessels⁴⁻⁹ have revealed that they were successfully used in shallow draft, weed-infested areas. They fell into disuse over the years, for a variety of reasons. The principal reasons are listed below.

- (1) The variable immersion of the paddle wheel under different ship-loading conditions inhibited use on cargo vessels.
- (2) The alternating rise and fall of the wheels at the water level, while the ship was rolling, created a differential thrust or yaw moment, causing the ship to follow an irregular course.
- (3) The low speed of paddle wheels required large gear reductions if high-speed prime movers were to be used.
- (4) By the time experimenters began systematic model tests and general research in the area of propulsion, the paddle wheel had in most instances been replaced by the screw propeller (as a result, the paddle

wheel has been treated as a specialized item, and published data on design parameters and model experiments are not only very difficult to find but are generally incomplete).

Only a limited amount of significant research has been conducted on paddle wheels, since the early 1900's. A summary and analysis of conventional paddle wheels was published recently by Gerbers, Volpich, and Krappinger. 1,2,3,5,6 They based their study on a series of open-water model tests (there was no ship hull in front of the wheel). Below are two general conclusions that may be drawn from their work:

- (1) The propulsive efficiency of a wheel with feathering paddles can be as high as 80 percent. In practice, however, this efficiency falls closer to 50-60 percent, which is what can be expected from well-designed propellers and is much higher than can be expected from water jets. Wheels with fixed radial blades may be approximately 10 percent lower in efficiency than the feathering type.
- (2) Efficiency, thrust, and torque generally Increase in proportion to rotational speed, up to a slip of approximately 35 percent. At this point, a breakdown in efficiency occurs due, probably, to the losses which accompany entrance and exit of the paddles and to their mutual interference. However, thrust continues to climb with slip.

In recent years, there has been an accelerated development of small high-speed craft for operation in inland waterways. These craft will be able to negotiate the swamps, marshes, and tail grasses that often border these areas, and also operate in open coastal waters. Operational experience in such environments has demonstrated the need for a simple, shallow-draft, weed-free propulsion system for use on such craft. A renewed interest in paddle wheels has developed, as evidenced by the testing currently under way in Europe and the United States.

A few conceptual studies of slow-speed paddle wheels have been conducted.⁴,⁷ Although these paddle wheels have proven quite successful in grass and marsh, they have not been able to generate high speeds in open water, mounted (as they usually were) on craft with displacement-type

hulis. Screw propellers are efficient and provide good maneuverability, but are easily fouled by weeds and require a moderate draft. Axiai-flow jet pumps provide good maneuverability and require only a shallow draft, but they are vulnerable to weed ingestion and their low efficiency requires large installed-power levels with the attendant weight, space, and noise penalties.

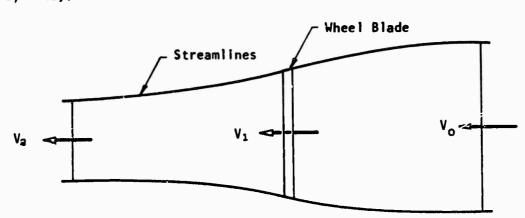
it seems apparent that a paddle wheel of small diameter, with high rotational speed, can be effectively applied to a planing-hull patrol boat of shallow draft. It is not difficult to imagine a high-speed stern wheel operating entirely within the boundary layer, close behind a planing craft where inflow conditions are constant (perhaps even controllable by transom-mounted flaps). The stern-wheel propulsion device would be of the fixed radial-blade type and would be ventilated at high speeds. Instead of having spokes or support arms, the blades would extend from a large central hub and would be supported by concentric discs or end plates. This configuration is simple and rugged and will resist fouling by weeds. The end discs and the blade ends could be used for support during operation in the land environment.

The disadvantages of the paddle wheel will not apply in this case, since --

- A patrol boat will generally be operating near a single loading condition, and variable immersion of the paddle wheel would not present a problem.
- (2) The paddle wheel of a patrol boat will be operating in the wake aft of the transom of a planing hull, and the paddle wheel therefore will not experience differential submersion due to roll motion.
- (3) Any speed-reduction problem that is likely to arise can be overcome by the application of modern lightweight power-transmission designs.

OBJECTIVES OF THIS PROGRAM

The basic objectives of this program were as follows:


- (1) To determine, by means of systematic model experiments, the hydrodynamic characteristics of a series of paddle-wheel propulsive devices with fixed radial blades.
- (2) To determine the feasibility of applying the highspeed paddle wheel to a high-speed planing hull of shallow draft.
- (3) To develop and extend paddle-wheel design parameters for high-speed use.

ANALYSIS

(i.e., high advance velocity and wheel revolutions), a simplified analysis of the wheel dynamics was performed. Scale-model relationships were derived for the paddle wheel so that the results of the model tests could be related to prototype sizes. The analysis is based on an "ideal" situation and does not take into account such factors as turbulence, cavitation, ventilation, splash, etc. It does, however, yield an upper limit for the expected performance characteristics of the paddle wheel and a means of comparing actual model-wheel operating conditions with the "ideal."

WHEEL DYNAMICS

From momentum theory, thrust can be defined in terms of water inlet and exhaust velocities and wheel geometry (see Nomenclature for definition of symbols).

Utilizing the momentum equation, we write

$$I = \dot{w} \nabla \Lambda = \dot{w} (\Lambda^{S} - \Lambda^{O}) \qquad (1)$$

$$= \rho b dV_1 (V_2 - V_0) \tag{2}$$

Preceding page blank

But shaft work is represented by

$$TV_1 = V_1\dot{m}(V_3 - V_0)$$

which is equal to the change in the kinetic energy of the fluid, or

$$\frac{1}{2}m(V_g^2 - V_o^2)$$
 (3)

Therefore

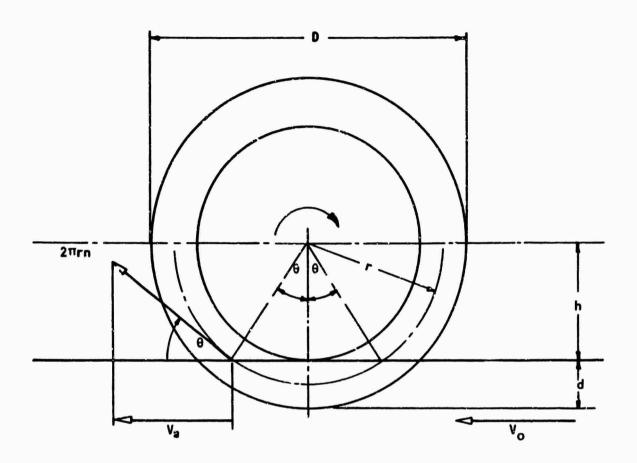
$$V_1 = \frac{{V_2}^2 - {V_0}^2}{2(V_2 - V_0)} = \frac{V_2 + V_0}{2} \tag{4}$$

Substituting Eq. (4) into Eq. (2), we get

$$T = \rho bd \frac{V_a + V_o}{2} (V_B - V_o) = \frac{1}{2} \rho bd (V_B^2 - V_o^2)$$

Rearranging, we have

$$V_2 = \left[\frac{2T}{\rho bd} + V_o^2\right]^{\frac{1}{2}}$$
 (5)


If we assume that the downstream velocity vector of the water leaving the blade is tangent to the blade arc, as shown in the sketch on the next page, we may write the relationship of the wheel rotational speed, the water exhaust velocity, and the angle θ as shown below (Eq. [6]).

$$V_{2} = 2\pi rn \cos \theta$$

$$= 2\pi hn$$
(6)

Transposing, we obtain

$$n = \frac{V_2}{2\pi h}$$

A conservative approximation of torque, in terms of thrust, is

$$Q = \frac{Tr}{\cos \theta}$$

$$= \frac{Tr^2}{h}$$
(7)

Solving for efficiency, we write

$$\eta_{\mathbf{p}} = \frac{\mathsf{TV}_{\mathbf{O}}}{2\pi n \mathbf{Q}}$$

$$= \left(\frac{\mathsf{V}_{\mathbf{O}}}{\mathsf{V}_{\mathbf{a}}}\right) \left(\frac{\mathsf{h}}{\mathsf{r}}\right)^{2}$$
(8)

It will be noted that efficiency is proportional to the ratio of the inlet and exhaust velocities and is very sensitive to the ratio of the height of the paddle axis to the effective radius. Although this analysis is, admittedly, rather simplified, it nevertheless serves to indicate that efficient paddle-wheel propulsion systems can be designed within practical limitations, using existing power-transmission equipment (see Appendix A).

SCALE-MODEL RELATIONSHIPS

Scale-model relationships were derived in order to have some rational method of selecting a wheel size and to make possible the correlation of the results with results for prototype wheels and earlier studies.

Since frictional effects are considered small as compared with inertial forces, we choose to scale by Froude Number, Fr., where

$$Fr = \frac{V}{\sqrt{aD}}$$

Let V be the relative velocity between water and blade-tip speed (i.e., blade-tip speed minus advance velocity of vehicle). Then

$$Fr = \frac{\pi_n D - V_0}{\sqrt{qD}}$$

Let $\lambda = D_p/D_m$, the scale factor. Then for equal Froude number,

$$\left(\frac{\pi_{n}D - V_{o}}{\sqrt{gD}}\right)_{model} = \left(\frac{\pi_{n}D - V_{o}}{\sqrt{gD}}\right)_{prototype}$$
(9)

$$\frac{\pi_n D_m}{\sqrt{D_m}} - \frac{v_{O_m}}{\sqrt{D_m}} = \frac{\pi_n D_p}{\sqrt{D_p}} - \frac{v_{Op}}{\sqrt{D_p}}$$

and therefore

$$\pi \left[n_{m} \sqrt{D_{m}} - n_{p} \sqrt{D_{p}} \right] = V_{om} / \sqrt{D_{m}} - V_{op} / \sqrt{D_{p}}$$
 (10)

Or, on substituting the relationship for the scale factor into Eq. (i0), we can write

$$\pi \sqrt{D_m} (n_m - \sqrt{\lambda} n_p) = i / \sqrt{D_m} (v_{o_m} - v_{o_p} / \sqrt{\lambda})$$
 (ii)

To fix the model, we choose to make both sides of Eq. (11) equal to zero. Then the linear water speed or advance velocity is

$$V_{O_{p}} = \sqrt{\lambda} V_{O_{m}}$$
 (12)

and the rotational speed is

$$n_{m} = \sqrt{\lambda} n_{p} \tag{13}$$

From dimensional analysis, the thrust forces may be expressed as

$$T_{m} = \frac{T_{p}}{\lambda^{3}}$$
 (14)

Since

$$Q_{p} = F_{p}L_{p} = \lambda^{3}F_{m}\lambda L_{m} = \lambda^{4}Q_{m}$$

torque may be represented by

$$Q_{m} = \frac{Q_{p}}{\sqrt{4}} \tag{15}$$

and since

$$P_{p} = \frac{F_{p}L_{p}}{T_{p}} = \frac{\lambda^{3}F_{m}\lambda L_{m}}{\sqrt{\lambda}T_{m}} = \lambda^{7/2}P_{m}$$

power can be written

$$P_{m} = \frac{P_{p}}{\lambda^{7/2}} \tag{16}$$

Efficiency is expressed as

$$\eta_{D} = \eta_{D} \tag{17}$$

A calculation of the forces expected from a scale model are given in Appendix A.

MODEL AND APPARATUS

PADDLE-WHEEL MODEL

On the basis of the scale-model analysis and in consideration of the test facility's limitations, it was decided that the paddle-wheel model should have an outside diameter of 5 inches and be 5-in. wide. The scale model was a radial wheel with fixed paddles and end plates (Fig. 1). Two paddle wheels were constructed. Their dimensions were identical, but one had six blades and the other had twelve blades. To reduce cavitation and entrapped air, holes one-half inch in diameter were drilled in the end plates between the blades. The wheel was driven by a $\frac{1}{2}$ -hp d-c motor in a closed-loop servo. The speed of the motor was measured by a d-c tachometer and fed back to the control amplifier. Speeds were set on a ten-turn dial and checked with an electronic strobe light.

The entire wheel, drive, motor, and tachometer assembly was mounted on a three-component balance system. The balance system was set up to measure the torque, thrust, and lift produced by the paddle wheel. Preliminary data showed the lift component to be negligible, and the lift element was therefore removed to reduce vibration and noise in the over-all recording system.

The entire assembly, including paddie wheel, drive, tachometer, torque balance, thrust balances, and the necessary counter-balance weights, was mounted on a base plate. The base plate had screws for leveling, raising, or lowering, and served as a means of clamping the entire assembly into the test section of the water channel (Fig. 2). A height-adjustable, flat-bottomed plate, simulating a boat planing hull, was mounted just forward of the paddle wheel. This plate provided a flow to the wheel similar to that which would appear on a moving boat, and served as the reference line from which paddle immersions were measured.

WATER CHANNEL

Tests were conducted in the Davidson Laboratory's variable-pressure free-surface water channel (Fig. 3). This facility has a 6-ft-long test section 13-in. wide and 13-in. deep, with a 7-in. water depth. The maximum water speed is 18 fps. The water channel can be completely closed and operated at reduced pressures (in which case it would be referred to as a water tunnel), but this was not required for the present study. The photograph shows that the return section and pump are located on the right. The water flows in a clockwise direction up to the contraction nozzie located just forward of the test section. The test section has windows on both sides for almost the entire length. The two hand wheels can be used to tilt the floor of the test section, to reduce the standing waves which develop at certain water velocities.

The paddle wheel, planing hull, and balances were inserted through the top of the channel and positioned midway in the test section. The water, after passing to the rear of the paddle wheel, was collected in the upper right-hand separating chamber. The main stream of water was deflected down into the return section. The upper portion of the separating section skimmed off the turbulent and aerated water and allowed it to settle before it flowed back to the return section.

The various pressure taps and the manometer bank are not shown in the photo. A 4-ft high platform provides a work area and serves as an observation post.

INSTRUMENTATION

Force Baiances and Electronic Recording Equipment (Fig. 4)

The force balances are designed around specially machined spring flexures which introduce almost no cross-coupling or hysteresis when properly used. For each force input, the spring flexures allow a given displacement which is sensed and measured by linear variable differential transformers (LVDT).

The output from the torque and thrust balance LVDT's was fed to a Sanborn carrier amplifier (350-1100) and recorder. To reduce distortion and overloading, due to vibration and the impact noise superimposed on the steady-state readings, the carrier amplifiers were set at very low gain. This was done so that the composite signal would be passed without asymmetrical clipping. After the signal was demodulated and fed to the d-c output, it was filtered to remove the unwanted vibration and noise, leaving the steady-state d-c level. This signal was then fed to a Sanborn d-c amplifier (350-1000), where it was amplified to drive an 8-in. Minneapolis-Honeywell Visicorder. Each signal channel was adjusted to give 7-in. chart deflection for full-scale torque and thrust.

The thrust and torque calibrations were fixed by using weights in a line and pulley arrangement to apply a known force to the paddle wheel and blade.

Paddie-Wheel and Water Speed Control

Constant paddle-wheel speed was maintained by means of a tachometer attached to the drive motor shaft. The output of the tachometer was fed to the control amplifier as one of two summing inputs. The other input was from a 10-turn speed-control potentiometer. When this speed-control potentiometer was adjusted, it supplied a fixed voltage reference, unique to that particular speed setting. To balance the amplifier input the tachometer had to be driven to a voltage level very near the speed reference voltage but of opposite sign. When the two voltages were balanced, the wheel speed remained constant even over fairly large increases or decreases in load.

A similar summing input and amplifier arrangement was used for the speed control on the water channel. The drive-motor armature voltage was sampled and summed with the reference from the speed-control potentiometer. For the final control, a General Electric Thymotrol was used to supply armature current. The inertia of the large mass of water, and the fact that only a relatively small amount of energy from the model was available to accelerate the water, combined to keep the channel velocity constant over large changes of model speed.

Water-Channel Speed Measurement

The water velocity was evaluated by measuring the difference in static pressure at the entrance and outlet of the nozzle. The taps in the side of the channel were connected to manometer tubes, calibrated in millimeters of water. Thus,

$$V(ft/sec) = \frac{0.145}{3.281} \sqrt{h(mm)}$$

based on a contraction ratio of 1:4 in the nozzle. Results obtained with the manometer tubes and static-pressure taps were checked with a Prandti tube mounted in the test section of the channel, and were found to be valid.

TEST PROGRAM AND TEST PROCEDURE

Four experimental variables were involved in the test program: Immersion depth (d), wheel speed (n), water velocity or advance velocity (V_0) , and the number of blades on the paddle wheel.

The test points for each variable were --

Vo: 3.6, 4.6, 5.4, and 7.7 fps

d: 0.3, 0.5, and 0.8 in.

N: up to 1600 rpm in Increments of 100 rpm

Number of blades: 12 and 6

The wheel was tested for all combinations of the above variables; and the thrust, torque, wheel speed, wheel immersion, and water velocity were recorded.

The test sequence was as follows:

- (1) Select a water velocity (Vo).
- (2) Select an immersion depth (d).
- (3) Vary wheel speed (4), throughout the range and record the thrust, torque , N , and $\,{\rm V}_{\rm O}$.
- (4) Repeat step (3) with a different V_0 untli the range of V_0 is covered.
- (5) Repeat steps ! to 4 with a different d until the range of d is covered.
- (6) Repeat steps 1 to 5 with the next model paddle wheel having a different number of blades.

FORMULAS FOR DATA ANALYSIS

From the data obtained in the model tests, various dimensional and non-dimensional parameters were calculated. For convenience, these were programmed to be run on an IBM 360/40 computer. Program and data are given in Appendix B.

The input data consisted of --

Number of blades Wheel diameter , D (in.) Blade immersion depth , d (in.) Ratio of d/D Advance velocity , V_O (fps) Wheel speed , N (rpm) Wheel thrust , T (lbs) Torque input , Q (ft-lb)

Two similar sets of parameters were calculated for purposes of analysis and comparison with results reported in the literature. These sets are labeled Method 1 and Method 2.

METHOD I

$$n(rps) = \frac{N(rpm)}{60}$$

$$h = \frac{D}{2} - d$$

$$\lambda_1 = \frac{12 \text{ V}_0}{\pi nD} = \text{advance ratio (not the scale factor)}$$

$$K_T = \frac{T(12)^4}{\sigma n^2 D^4} = \text{thrust coefficient}$$

Preceding page blank

$$K_Q = \frac{Q(12)^5}{\rho n^2 D^5} = \text{torque coefficient}$$

Fr =
$$\frac{\pi}{\sqrt{12g}}$$
 n $\sqrt{9}$ = Froude number based on wheel speed

$$s_r = (1-\lambda_1) = slip$$

$$\Pi_p = \frac{K_T}{K_Q} \frac{\lambda}{2} = \text{propulsive efficiency}$$

METHOD 2

$$\frac{T}{\rho D^3}$$
 (12)³ = a frequently used thrust parameter

$$\frac{Q}{\rho D^4}$$
 (12)⁴ = a frequently used thrust parameter

$$V_a = 0.5921 V_o \text{ (knots)}$$

$$\frac{V_a}{\sqrt{D/12}}$$
 = a frequently used velocity parameter

$$\sqrt{N \frac{D}{12}}$$
 = a frequently used velocity parameter

$$N\sqrt{\frac{D}{12}}$$
 = a frequently used velocity parameter

$$\eta_{p} = \frac{T V_{o}}{QN} \frac{5252}{550} = \text{propulsive efficiency}$$

$$s_{\text{reff}} = \frac{n^{\pi}(\frac{D}{2} + h) - 12 V_{0}}{n^{\pi}(\frac{D}{2} + h)} = 1 - \frac{12 V_{0}}{n^{\pi}(\frac{D}{2} + h)} = \text{effective slip}$$

RESULTS

The preliminary tests showed a high torque input to the wheel, with a corresponding low thrust, which resulted in a low propulsive efficiency. It was believed that there was Insufficient venting of the cavity formed between adjacent blades and that an "air pocket" was being formed that prevented the water from filling the cavity. Vent holes 0.5 inch in diameter were therefore drilled into the side plates between adjacent blades. These vent holes insured sufficient ventilation and improved the performance slightly over some ranges of operation.

The test results for the final configuration are presented in graphical form (Figs. 5 to 49). The computer program used to calculate the various dimensional and non-dimensional parameters, and the test data and performance parameters, are given in Appendix B.

The primary results are shown in Figs. 5 to 16 as thrust and torque versus wheel speed, with advance velocity, blade immersion depth, and number of blades as changing parameters. Comparison of Fig. 5 with 6, 7 with 8, and 9 with 10 (these are plots of thrust versus wheel speed for three different immersion depths) indicates that the six-bladed wheel usually generates more thrust than the twelve-bladed wheel. This can also be seen quite clearly in Figs. 11 to 13, which are composites of Figs. 5 to 10. A similar comparison of Fig. 14 with 15, 16 with 17, and 18 with 19 shows that the torque is also larger for the six-bladed wheel.

An interesting feature that should be noted on almost all the figures is the apparent break in the thrust and torque curves which occurs at high advance velocities.

Figures 20 to 25 are plots of thrust versus effective slip for various advance velocities, blade immersion depths, and number of wheel blades. Here, also, thrust can be seen to increase smoothly with increasing slip. At the higher advance velocity, however, there is a thrust "breakdown" which occurs at about 40-percent slip. This breakdown appears to occur

over a span of about 10 percent in slip, after which the thrust again continues to increase with increasing slip.

Similar breakdown phenomena have been reported in the literature, but no satisfactory explanation of why this phenomena occurs is available. By comparing Fig. 20 with 21, 22 with 23, and 24 with 25, it can readily be seen that this phenomenon is more pronounced in the case of the six-bladed wheel.

It can also be noted, in Figs. 20 to 25, that the thrust curves do not go to zero for zero effective slip. This is because of the "form" drag of the wheel itself, and other losses. Comparison of the curves for different blade immersions shows that for smaller immersions (i.e., d=0.5, 0.3) the thrust at zero slip more closely approaches zero, which is to be expected since there is less wheel in the water and hence less loss.

Figures 26 to 31 are plots of propulsive efficiency versus wheel speed at various advance velocities, blade immersion depths, and number of wheel blades. Figures 32 to 37 are plots of the same data versus effective slip. Comparison of the figures shows that the six-bladed wheel also has a higher efficiency than the twelve-bladed wheel, with the maximum efficiency occurring in the vicinity of 30- to 4C-percent slip. The maximum value of propulsive efficiency achieved is 41 percent, which is in agreement with some of the more recent literature, 10 but considerably lower than that presented in some earlier reports. 1, 2 The efficiency curve is very "peaky"; that is, the high values of efficiency occur over a rather narrow range, then fall off sharply. The twelve-bladed wheel usually develops its maximum efficiency at a slip value that is somewhat higher than that for the six-bladed wheel.

Figures 26 to 37 show that the peak efficiencies increase with increasing immersion. This result is not what would normally be expected, and a completely satisfactory explanation is not available. A partial explanation may be that the "form" drag of the wheel does not vary linearly with immersion depth and may affect the ratio of net thrust to input torque in such a manner as to produce a maximum efficiency for some value of immersion depth above which the efficiency may again decrease. It is also of interest to note that all the efficiency curves, regardless

of blade immersion depth or number of wheel blades, join to form a single line at slip values above 70 percent.

Figures 38 to 49 present the test data as functions of torque coefficient and thrust coefficient, common parameters utilized by navalarchitects.

PREDICTION OF PROTOTYPE PERFORMANCE

If we choose as our prototype a small "jeep size" vehicle having a planing type hull, we can estimate quite accurately the power required to propel it at any given speed. The model paddle wheel test results can then be scaled up to match the vehicle.

Assume that the prototype characteristics are:

Overall length = 18 ft

Width (beam) = 5 ft

Gross weight = 4000 lb

Center of gravity location = 7.5 ft from bow

Deadrise = 15 degrees

Hull type = planing

The Davidson Laboratory "SPDBOT Program" will then predict the drag versus speed curve shown in Figure 50. As a compromise between wheel size and efficiency, we have selected a 4 ft diameter wheel, 4 ft wide, with six paddles.

From dimensional analysis

$$\lambda = \frac{D_p}{D_m} = \frac{L_1}{5.0/12} = 9.6$$

$$N_p = \frac{1}{\sqrt{\lambda}} N_m = 0.323 N_m$$
 (18)

$$T_{p} = \lambda^{3} T_{m} = 884 T_{m}$$
 (19)

$$V_{o_{D}} = \sqrt{\lambda} V_{o_{m}} = 3.095 V_{o_{m}}$$
 (20)

$$P_{p} = \frac{\lambda^{7/2}}{5252} Q_{m} N_{m} = 0.0436 Q_{m} (in-1b) N_{m} (rpm))$$
 (21)

For ease of discussion, we shall scale down the full-scale drag versus speed curve of the prototype from Figure 50 to match that of the model test results. To do this, we divide the drag values by λ^3 and the speed values by $\sqrt{\lambda}$. We now have a curve of drag (or thrust) versus speed which we can match with experimental test data from the 5 inch model paddle wheel, Figure 51. In Figure 51, lines of thrust verse advance velocity for constant wheel speed have been added to illustrate the reserve capability of the wheel.

By determining the required thrust at 3.6, 4.6, 5.4, and 7.7 fps from Figure 51, we can determine from figures 5, 14, and 26, the required wheel operating conditions (T_m , N_m , Q_m , N_p and horsepower) to match the prototype requirements. Substituting these values of model wheel operating conditions into equations 18, 19, 20 and 21 gives us the operating conditions of the prototype vehicle and wheel.

From Figure 51 we see that the model operating conditions which match the model advance velocity of 7.7 fps are

Substituting these values into equations 18, 19, 20 and 21 yields the following prototype conditions:

These values are well within the realm of practicality for a usable reconnaissance vehicle.

From the dynamic analysis on page 7, the following equation was generated for the thrust of a paddle wheel.

$$T = \frac{1}{2} \rho bd (V_a^2 - V_o^2) = \frac{1}{2} \rho bd [(2\pi hn)^2 - V_o^2]$$

If we take the same data from page 26 (d = 0.8 in., V_0 = 7.7 fps, b = 5.0 in., and n = 10.3 and 16.7 rps), we get

$$T = 0.0269 [84,2-59.3] = 0.67 lb for n = 10.3$$

and

$$T = 0.0269 [221-59.3] = 4.35 lb for n = 16.7$$

Under these operating conditions, however, our model generated a thrust of 0.665 lb and 1.0 lb which indicates that the simplified analysis gives good agreement (0.665 lb vs. 0.67 lb) provided the wheel speed is sufficiently slow so that cavitation and/or ventilation does not occur. When the wheel speed is sufficiently high to cavitate and/or ventilate, the simplified analysis predicts results which are quite optimistic (4.35 lb vs. 1.00 lb).

The measured test data does not extend above a prototype speed of 16.3 mph for the vehicle size chosen. However, it can be seen in Figure 50 that the drag curve is fairly flat at the speeds near to 42 fps (29 mph). It is therefore reasonable to assume that the paddle wheel will be able to provide the required thrust for speeds near 30 mph with somewhat greater horsepower. Figure 52 is a simplified concept drawing of a possible configuration of a high speed amphibious reconnaissance vehicle utilizing a paddle wheel propulsion system.

CONCLUSIONS

- (1) There is a considerable amount of mechanical vibration in the system, because of the impact loading of the paddle wheel. This must be filtered out. Special procedures must be employed, when using filters, to eliminate the noise in the thrust and torque signals and ensure that asymmetrical "clipping" of the signals in the amplifiers does not occur.
- (2) The six-bladed wheel generates more thrust than the twelvebladed wheel.
- (3) The six-bladed wheel is significantly more efficient than the twelve-bladed wheel.
- (4) Maximum efficiency occurs at about 30- to 40-percent slip for the six-bladed wheel and at about 50-percent slip for the twelve-bladed wheel.
- (5) Thrust and efficiency increase with increasing immersion depth, within the range of immersions tested (d/D = 0.06 to 0.16).
- (6) A maximum propulsive efficiency of 41 percent was obtained with the six-bladed wheel.
- (7) There is a break in the thrust curves, in the region of 30-to 50-percent slip, which spans about 10-percent slip (Figs. 19 to 24). It is most noticeable on the six-bladed wheel and occurs at high advance velocities. A satisfactory explanation has not been found. However, it is felt that the break may be due to some type of flow instability or wave interference.
- (8) There appears to be some type of flow phenomenon which more seriously affects a wheel of small diameter than a wheel of large diameter. This is especially noticeable in comparing the efficiency curves with those obtained by other experimenters who used a wheel of larger diameter.^{1,2,10} The

curve for the small wheel may have the same peak value of efficiency, but it occurs over a narrow range and falls off sharply.

(9) Because of the relatively high peak efficiency found in this series of experiments, the application of a high-speed paddle wheel to a planing hull of shallow draft is deemed feasible.

RECOMMENDATIONS

A design study of a small, high-speed vessel propelled by a paddle wheel should be undertaken. On the basis of the results of this study, a small prototype could be built, instrumented, and tested.

To avoid possible deficiencies in any full-scale design based on the test model, it is recommended that any future experiments and tests be performed on a wheel of larger diameter, since scale distortions were evident with a scale factor of about 8.5:1. A scale factor of 3:1 or 2:1 would be most desirable.

REFERENCES

- VOLFICH, H. and BRIDGE, I. C., "Paddie Wheels, Part I: Preliminary Model Experiments," Institute of Engineering and Shipbuilding in Scotland, 1955.
- 2. VOLPICH, H. and BRIDGE, i. C., "Paddle Wheels, Part II: Systematic Model Experiments," institute of Engineering and Shipbuilding in Scotiznd; paper presented 13 March 1956.
- 3. VOLPICH, H. and BRIDGE, i. C., "Paddle Wheels, Fart III: Ship/Model Correlation," institute of Engineering and Shipbuilding in Scotland; paper presented 26 February 1957.
- 4. EHRLICH, I. R., KAMM, I. O., and WURDEN, G., "Studies of Off-Road Vehicles in the Riverine Environment, Part I. Performance Afloat," Davidson Laboratory Report 1382, October 1968.
- 5. KRAPPINGER, 0., "Schaufebradberechnung," Schifftechnic, 1954.
- 6. GERBERS, F., "Das Schaufelbrad in Modelsversuch," Springer Verlag, Wien, 1952.
- 7. BARNES, S., "The Army's Wacky Watercraft," <u>Machine Design</u>, 15 February 1968.
- 8. VAN MANEN, J. D., "Fundamentals of Ship Resistance and Propulsion, Part B. Propulsion," Netherlands Society of Engineers and Shipbuilders, Publication No. 132A of the N.S.M.B.
- 9. BRAGG, E. M., "Feathering Paddie Wheels." Paper presented at the Twenty-fourth General Meeting of the Society of Naval Architects and Marine Engineers, New York, 16 November 1916.
- 10. VON KURT, HELM, "Untersuchung eines Schnellaufenden Schaufelrades als Antrieboorgan für Flachgehende Binnenschiffe," Schiff und Hafen, Heft, 10/1967, 19 Jahrgang.
- 11. SAVITSKY, D., "Hydrodynamic Design of Planing Hulls," Marine Technology, Vol. i, No. 1, October 1964.

Preceding page blank

Appendix A

A CALCULATION OF THE FORCES EXPECTED FROM A SCALE MODEL

For a 30-knot craft with a gross weight of 12,000 to 15,000 lb, we can determine the characteristics for one unit of a twin-stern wheel-propulsion system by using the equations derived in the dynamic analysis of a paddle wheel. The required thrust is known because the hall shape, drag coefficient, and required vehicle speed are known, or can be estimated accurately.

Choosing the dimensions

$$D = 3.5 \text{ ft}$$
, $d = 0.5 \text{ ft}$, $h = 1.25 \text{ ft}$, $r = 1.5 \text{ ft}$, $b = 3.5 \text{ ft}$

for the wheel, then

$$V_a = \left[\frac{2T}{(b)(d)\rho} + V_o^2\right]^{\frac{1}{2}} = \left[\frac{2(1200)}{(3.5)(0.5)(2)} + (50.7)^2\right]^{\frac{1}{2}} = 56.6 \text{ ft/sec}$$

$$n = \frac{V_2}{2\pi h} = \frac{56.6}{2\pi (1.25)} = 7.20 \text{ rps}$$
; $N = (7.20)(60) = 432 \text{ rpm}$

$$Q = \frac{Tr^2}{h} = \frac{(1200)(1.5)^2}{1.25} = 2160 \text{ ft-lb}$$

$$shp = \frac{QN}{5252} = \frac{(2160)(432)}{5252} = 177/unit$$

ehp =
$$\frac{\text{TV}_0}{550}$$
 = $\frac{(1200)(50.7)}{550}$ = 110.0

Preceding page blank

$$\eta_{p} = \frac{ehp}{shp} = \frac{110}{177} = 0.62$$

The size of the paddle wheel and the size of the power units are well within practica! ::mitations.

TO SCALE THE EXAMPLE, USING A MODEL PADDLE WHEEL

Prototype characteristics are as follows:

Using a 5.0 by 5.0 in. model, we obtain

ີ_D ≃ 62

$$\lambda = \frac{42}{5.0} = 8.4$$

$$N_{m} = \sqrt{8.4} (432) = 1250 \text{ rpm}$$

$$T_{m} = \frac{1200}{(8.4)^{3}} = 2.03 \text{ lb}$$

$$Q_{m} = \frac{2160}{(8.4)^{4}} = 0.434 \text{ ft-lb} = 5.22 \text{ in.-lb}$$

$$F_{m} = \frac{177}{(8.4)^{7/2}} = 0.1028 \text{ shp}$$

$$T_{m} = 0.62$$

$$V_{0_{m}} = \frac{50.7}{\sqrt{8.4}} = 17.5 \text{ fps}$$

$$V_{2_{m}} = \frac{56.6}{\sqrt{8.4}} = 19.5 \text{ fps}$$

SPECIAL CASE (MAXIMUM ACCELERATION OR THRUST) WHEN $V_0 = 0$ and N = MAXIMUMFOR d/D = 0.143

$$V_{a} = \left[\frac{2T}{bd\rho} + V_{o}^{a}\right]^{\frac{1}{2}} = 2^{\pi}hn$$

Therefore

$$T = 2\pi^2 h^2 n^2 b d\rho$$

when $V_0 = 0$; and for $\lambda = 8.4$,

$$T = \frac{2(3.1416)^{2}(1.786)^{3}(5.0)(0.714)(62)(20.7)^{3}}{32.2 \times 12 \times 1728}$$

$$= 8.95 \text{ lb}$$

$$Q = \frac{8.95(2.143)^{3}}{1.786} = 23.1 \text{ in.-lb}$$

$$\text{shp} = \frac{2\pi(20.7)(23.1)}{550\times12} = 0.455$$

These calculated values of thrust and torque will, however, be unattainable, because of the ventilation and/or cavitation of the paddle whee!. They do, however, give an upper limit to the forces that can be expected,

Appendix 8 DATA REDUCTION PROGRAM AND LISTING OF DATA OUTPUT

V20 2-JUN-76 18:5F PAGE 1 DIMEVSION VR(5F2), O(52F), OS(56F), OL(58F), N(56F), T(5R2), A(58F)	(47) (57) (57) (57) (57)	ia a	0 705-12-10-20-00-00-00-00-00-00-00-00-00-00-00-00	AN METERO. 49P(1).OC(1).OS(1).OE(1).VOC(1) 4 FOREAT(1). 74EMIS POOLET NUMBER 1.179×.MICH SPEED PADOLEGMEEL R. AZX. OCTOBER 1968./// R	2 OF SK. LITTLE W. 4K. LITTLE M. 4K. TAMBOA 8UB 3.4K, 1KT. RV. TAK. SK. SK. SK. SK. SK. SK. SK. SK. SK. S			
		60 60 6	10000 10000 10000	10 00 00 17 00 00 10 10 10 10 10 10	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			

					222.002314931
	77.4.				S
	FDSHATI: A. UX.FB. A. UX.FF. A. BX.FF. A. A. A. FF. A. FF. A. B. C. (A. FF. FF. A.) A. A. FF. A. B. B. A. FF. A. A. FF. A. A. C.	FETCH VE.B (1e1), DR, D(1), NE, DR(1e1), DR, DR(1), NE, DR(1e1), DR, DR(1), NE, DR(1e1), DR, DR(1), NE, DR(1e1), DR, DR(1), DR, DR, DR, DR, DR, DR, DR, DR, DR, DR		HARLASSER (CI) 212) HARLAS	3 281757676355
	6, 4 x . F. 1 3 x CD 1 12) : 0 6)		20-72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
~	6x, f7.	60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	282622871268 SORT EXIT
3974	**************************************		N		28 28 28 28 28 28 28 28 28 28 28 28 28 2
18 (51	F8.4.8 CLPICED. CD/120.00 CD/120.00 CD/120.00	11.937=0 (11.937=0 (11.937=0 (11.937=0		# 600 F C C C C C C C C C C C C C C C C C C	2 FLDAT
	4		9 0 2 4 4 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1000	60 60 60 60 60 60 60 60 60 60 60 60 60 6
2-7011-78		F F F F F F F F F F		14481.570207(01)/12) 14481.570207(01)/12) 14481.570207(01)/12) 14481.570207(01)/12) 14481.570207(01)/12) 14481.570207(01)/12] 14481.570207(01)/12] 14481.570207(01)/12] 1441206(01)/12] 1441207(01)/12] 1441206(01)/12] 1441206(01)/12] 1441206(01)/12] 1441207(01)/12] 1441206(01)/12] 144120	E
< 5 ×	No no no no no	E CO	60 F.	in in	4 4 6 E
ن * ا		NT BETTE (# # # # # # # # # # # # # # # # # # #		**************************************
<u> </u>					254628222338 28462822338 2846381378 2848 4448 4445 10987 1NTO
COBAT.PPT					CONSTANTS 284 5 286 5 288 5 288 5 288 5 288 5 288

		8 8 A A A A A A A A A A A A A A A A A A		9340		
		TERM		2		
				4362		
		F F 1 2 5 W 4 4		87	•	
PAGE 3		7 8 6 C		3376		
16:51		700 ×441		89		
2-JUN-78		12 F. 4 M 20 FB AFE 4 4 4 4 M FM M		2412		
857		- 6 6 1		50	9 10	
4.3					DETECTE	
- de	(2)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 1426 6332	EARGAS	E uSED
COBAT.BPT	SCALARS	E E 1 1 ~	ARRAYS	% > ⊦	. WIY	3× 208

THEMS	THEN'S PROJECT NUMBER	ER 1			HIGH SP	HIGH SPEED PADDLEHHEEL	TRACE!				PCYOFER 1960	7.00	
NUMBER	NUMBER OF BLADES 12	~	9000.5=0		117	LITTLE 0/046,6688			LITTE 0* 0,380	900'0 00		*****	_
2 M T T T T T T T T T T T T T T T T T T	I LITTLE N	LITTLE H	LAMBOA SUB 1	*	귳	ă	FRCUDE NO.). 6 L1F	67.4	•	د	•	
1615	26.9167	2,2823	9,1036	0.2146	3.3063	7600	9,6189	1010.0	0.1019	0.6178		0.1640	
1146	22,3333	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.1574	2.6172		0.3121	7.9818	9.1426	0.1110	9.995		0.1.70	
1228	20.023	2,2262	2,1757	3,010	3636.0	0.0131	7,1472	0.8243	0.1236	0,4298		9,1271	
1346	17,3333	2,2082	4.2527	3.8297	0.2020	0.0154	6,1942	0.7973	0.1390	0.3638	8.000	0,1120	
249	14.5202	2,2733	2.2424	9.8249	9.8883	0,1193	5,1817		1.1966	3,3868	8.000	. 010.	
6. 6.	11.5322	2.2323	3,3356	0.2322	9888	0.0294	4,1896		0.1576	9,2336	0.00	2045	
21.0	5565	2,2032	400	5655	900	10.00	20000		124	244		7/100	
925	0.00	2000	2220'2	250.2		200	1414		40010	6.272			
115	1,9167	2.2633	50000 T	-6.5129		-0.1175	6.6849		4.3817	-0.1100		.0.03	
# # # # # # # # # # # # # # # # # # #	METHOD II(VOLPIGH) RPM (T+12++3)/(RHO+D++3)	0.000	(Ge12ee4)/(RHGegee4)	3000	٧,	YA/5GRT(0/12)		SGRT(ND/12)	NSGRT (0/*	./0	473	EPFECTIVE	Stib
1615	4.4734		2,8233	2.	2,7237	4,2195		25,9484	1842.478		0,1010	0.0611	
1473	3.8467		2,6678		7237	4,2195		24,7487	448.000%		9,1090	0.0474	
1348	3.5627		2.5179	2	7237	4,2199		23,6291	864.9663		1,1159	0.0326	
1278	3.8617		2.1767	2	7237	4,219		12,3687	774.5967		0,1234	0,8131	
1846	2,5927		1,9326	2,	7237	4,2199		20,0167	671.3171		1,1350	0,7643	
678	2,1839		P:00:1	2,	7237	4,219		* 670 ·	561.5826		18566	289.	
698	1,6629		1,5136	2.	7237	4,2195		16,9558	449.4934		0,157	0.6740	
515	4.484.		1,3931	2,	7237	4,214		14,6487	333.4311		1294	1408	
600	8,4353		2686	ĸ.	2,7237	4.2199		4000	210.823		0,100,0	2000	
118	18.2041		24.1342	2 6	2.7237	4,2195	ŭ š	6.922	74.2322		4.0115	0000	
,				•		•	u					•	

1 4344	THEMIS PROJECT NUMBER	43 EP			HICK SE	HIGH SPEED PADDLEMMEEL	132HR3				QCTRSER 1968	1940	
838×0×	3 OF 9LADES# 12	12	C=5.2823		111	LITTLE 0/0+0.8000			רנגגרב נ	LITTLE On 0,300		VD= 5,486	
7 W W W W W W W W W W W W W W W W W W W	1 I LITTLE A	LITTLE H	LAMBDA SUB 1	}= 3t	ň	9	FROUDE NO.	0, SLIP	£7A	b-	د	•	
1618	26,8333	2,2783	2,1937	8.8236	9886.	2,8163	9,5891			9,9928		9,2102	
1482	24,6667	2,2232	£,1672	3,4255	2.0000	9,8166	0.8148				_	9,2702	
1362	22,6667	2.2737	6.1828	9.8253	3.3980	10.01	0.1881			9,7684		0.2300	
1182	19.6567	2.2383	2,2298	1,8287		9,3221	7,2286					9,2002	
1233	17,1507	2,2,92	0,2423	3.0386		9.3249	6.1348					6.1783	
683	16,6567	2.2302	3.2013	3, 2331		9.2306	5,2413					1,1682	
736	11,6567	2,2923	5 JUN 5	2,3376		9.8494	4.1492			8.2998	. 4000	8777	
515	8.5433	2,2733	9.489.5	3.4373		8.8615	3.6673			6.1300	9.888	0.1102	
24.2	5.6567	2.2.33	2,7252	7616.2		3.3786	2.6258	8.2729		6.8378	_	4.0552	
178	2,9333	2,2367	1,456	-8,3926		-8.0461	1.8125	.0.4548	7.1253	•	_	.6,00%	
10 m L 3 m	VETWOO II (VOLPICH)												
o.	(Te12003)/(AHD00005)	H0.00.33	(3+12++4)/(8×0+5++4)		4 >	VA/598T(0/12)		SQRT (ND/12)	MSGRT (D/12)	10/123	ETA	EFFECTIVE SLI	2
1.61	7.6797	1	4.9216	9	1973	4. 0933		25.9645	1839.2585		0.111W	4400.0	
4.87	6.445	6	4.7653	**	3.1973	4.95JJ		24.8328	955.3359		.1134	0.0221	
C 90 F	5,424	::	9262**	•	1973	4.9933		23.6848	877.8762		1,1207	9.00.0	
1162	£.6313	m)	3,5655		2978	766.4		22,1734	761.6867		1.1342	0.7748	
1032	3,741	+1	3,2574	'n	1973	4,9933		29,7163	664,8621		1.1470	2445	
588	2,949	0.	2,7434	'n	1973	4,9933		19,1485	566.837		1,1522	. 7 8 8 8	
2:1	2,133	Ç.	2,2923	'n	1973	, 050° A		17,8783	451,846		1,1640	0,4239	
515	1,134	en)	1.8834	•	1973	4.9533		14,6487	332,43		1,1444	1000	
6.45	3,2541	-4	9440	, ,	1973	4,9933		11,9824	219.4891		8,1817	0,2299	
472	-1.3432	2	-2.1342	ř	1973	4.953		8.4163	189.734		7.1249	2400	

THEMI	THEMIS PROCEST NUMBER	1952			48 H91H	HIGH SPEEC PADOLEAMEEL	133479				0CTD8KR 2968	900
W BER	R OF BLADES.	12			L81	L177LE 0/0=0,8000			רונגרנ	LITTLE N. 6,308		ve* 7.768
7 @ M # 12 13 13 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	O I LITTLE N	H 31167	LAWBOA SUB 3	ţ	4	ģ	FROUDE 10.	0, St.	£7.4	•	ر	ø
4.4	23.3333	2.2623	2.282.	8.63.8		3.8331	6.3384	8.7479		8.00.3	9006.8	8007.8
1357	77.00.00	C C C C	2.2514	84E2 - 2		8.6286	8.0486			2,9318	8.88.8	0,3310
1 60	19.5567	7. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.2991	2.6325		3.2329	7,8258			2,7358	8.0848	0,3897
) *() 12 4 +	17. 3333	2.2.2.3	4000 A	2.0338		0.2361	4.1942				7.0000	f, 2712
7 60	F. 12 C. S	2,2,2,	2.4257	0479.0		9,0467	9.1017		3 3.1683		0.22.0	0.2398
- au	11,3433	2.2.2.	ta Orio orio	2.2523		6.2672	4,8541	4.64.5	8 2.2219	2,1928	9.35.8	8,2134
2.00	1 C. C.	2.22.2	2.6921	3.4322		3.2567	3,2379				8.6408	0,1023
1 4	5.7522	2.2.2.3	6 M C 2 1 1	100.00		4.2134	2,3548	•		•	8.1686	0,4198
240	1111	2.2.2	1.3878			*0.4115	. 5486			-6,2133	0.650.0	.0,002
20	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.2.2	6 C C C C C C C C C C C C C C C C C C C	7625.5		4046.8	5,3071	40			**********	0,2572
26.97	19.1007	2,2323	ON CH . C.	V 20.57	0.9369	5450	28619	8.6783		8,6483		6,2467
1 1 1 1 1	CHOIGICACHDAN	-							:	:		
G.	(NeeDecity / (NeeDecite))	8-0-0-0-8	(3=12==4)/(4+3+3+4)	1 ***	4 >	V1/5087(0/12)	10/12)	\$047 (\C/12)		NSON TONE "	24	
1422	400.4	;	5.8342	•	5892	7.2638		24.1523	983.69		0,1200	0,7310
4 4 5 5	40.6	7 7	6.62.6	•	4.5592	9.8638		23,7171	871,4212		8,1442	9,7219
7 C	5.2456	56	1000	•	4.5592	7.7558		22, 1736	741.48		1.1479	0,101,0
	461.4	•	4.7652	•	. 5592	7,2638		26 2167	671.31		* 6 * 3 · 6	0.630
50,40	3,233.		SU (P.	•	4,5592	7,24.50		19 94	901.5020		1,1443	1,5114
40	2,7975	7.5	3,5972	•	4,5592	7 2632		16,0329	438.93		1.2618	0.4478
515	82.9533	3.5	1,7528	•	4.5592	7,9638		14,9774	329.28		1982	0,2434
345	4640.81	**	2,2695	•	4,5592	7,86		12,9896	222.69		1.2314	
252	-1.52		6697.71	•	4,5592	7,2638		13, 4863	167,82		4774	.0,4443
1 (F)	69.1		7000	•	4,9592	7,3638	25	19,4166	934.17		8,1623	9,5851
1993	4,6313	8	5,3814	•	5385	7,8638	2	21,3112	783,5928		D.147¢	0.1353

LABAL	PROPERTY PROPERTY STAGET	HAE4 1			*****	HICH SPEED PADDLEWEEL	EVHEEL				OCTOBER 2968	1000	
36.0.	21 =83394JB 30 436mD.	2	3.5.2820		-	LITTLE U/0+8,1998			LITTE D* 0,500	. 0.500		***	
167700	O I LITTLE N	רנידנב א	LAWBOA SUB 1	¥	ş	ğ	FRAUDE NO.	9116	£7 A	•	و	•	
1542	25,6567	2,2763	9,1369	3.3213	3.2038	6.9194	9.1722	0.0031	0.8940	0,0210		6,2407	
1494	24,6657	2,1.33	7,1425	3,3247		9.01.49	0.0140	0.0975	0.2009	0.7290		0.220%	
1340	22,3133	2,2727	7.1574	3,4236		9.3100	7,9010	0.8426			707.0	0.2047	
12.6 ×	21,573	2.27.37	2,1673	4,4233		0.3174	7.5849	0.0327	_	6,486.3		1007	
1132	19,8333	2,0.43	7,1956	4,3254		0.3231	4.7332	8.0134		6.5270	3.2000	0.1732	
972	16,1667	2.173.	7,2174	3.3231		0.1244	5.7773	3.7626		0,4290	0.000	1.1940	
G 55.2	14,1667	2,223	2,2491	V. 0317		0.3250	5.8424	C. 7910	2.1920	6.5728		0.1240	
767	12,5667	2 , 7 : 2 .	2,2774	3.6333		0.3265	4.5269	8.7226	0.1974	6.2020	0.1060	1034	
612	13,1467	2.4.5	1.3497	3.4395		.0397	3,6332	8 + 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9.1614	0,2200		0.1002	
425	7,5933	A. 6. 63	7,4961	2,4339		0.3649	2.5313	1.5439	0.1296		B. 800	9.47	
213	3,552	2,2247	6696"	4.2223	3.8630	0.4514	1.2000	0.6101	0.000.0		7.000	0.0190	
125	N. 7844	2,5000	1,6859	-3.5394	3,3000	. 3367	2,7449	-4.000		•••••			
T H	CHOIGHOAD CH												
, A	APM (Te12==3)/(A-G=0+3)	4-0-0-6	(3+15+. +)/(8+0+0+++++++++++++++++++++++++++++++++	0 ***	٧,	V4/5087(E/12)		\$047(ND/12)	NSGRT (3/12)	0/121	7.7	EFFECTIVE SL.!	:
24.0	10 A	m	4.2254	^	7237	4.2199		29.3311	444.0057			0.0470	
4 4 5 2 2	5.2456	3.0	3.7758	~	7237	4.2199		24.0320	199.239			0.0457	
1342	4.8359	0.15	86.36.38	~	723.	4.215		3,6291	64.96		0.189	4.6252	
1362	4.292		3,1916	~	7237	4,2195		2.9129	013.326		9.1123	0.0141	
120	3.741		2,9675	~	.7237	4,2199		1.6987	729.411		11102	1.7927	
976	2,2417		2.6523	~	,7237	4,2199		0.133	626.1323		0,1259	0.7505	
9.5	2.6549	6.	2,1592	~	,7237	4.21.9		0,0103	948.6726		11926	0,7244	
763	2,412	~	1,7724	~	,7237	4,2199		7, 7951	498.5779		11976	0.0017	
613	1.97.	•:	1.6614	8	,7237	4,2199		9,9426	393,7933		0.1614	0,130	
425	76:9° 6	7.6	1. 3489	~	,7237	4,219		3,3273	274.336		1206	6,4427	
213	3,6349	()	8000° K	~	2,7237	4.2195		4,4207	167.4020				
125	-8.6136	36	6.6223	7	. 7237	4.217		7.2167	00.4072			. 47 E. A.	

FE	BENTON EDSTORE SINSEL	* 694			E TOIT	HICH SPEED PADDLEHMEEL	באתנו				0C106ER	1300
#38±0/	4 CF BLADES# 12	12			-11	LITTLE 0/0+0,1000	.1000		רו.גרנ ם.	. 0.50		007.0
) (C	2 1	L177LE A	LA *80A SUB \$	ţ	\$	ê	ON JORDEA	0. SLIP	ž	•	م	ø
1522	29.3333	2,2733	2,1628	C.4245	_	6.8109	9,8931	•	0.1837	6,9310		9,504
1422	23,5557	2,4727	MACTOR	4.4277	73	3,8229	6.4379	•	9.118	9996	0.000	26621
131.	21,8333	2,2753	6061.	4.3324	•	1.0242	7,6823	_		8,6458		0,2000
F. 2.	22.2.67	2,1:43	2,2:63	3,4317	•	9522.0	7.1472	•		8,7238	0.030	0,2403
2027	13,1067	2,232	2,2271	2,3318	9	£.0294	6.4928	•		•	. 250	0,2203
96.5	16.4373	20110	0,2526	4.2354	•	. 426.0	9,8368			•	1190.0	4.2265
832	14,0007	2,000	C,2813	2,3371	73	8,2391	9,2413	3.7187	4.1334	-		0,2047
246	12.6567	2,::52	7,3257	2,8379		6548.0	4,9269			•		0.100
7:0	7	2,2727	3,4658	3.2426		1008.	3,6332		3.1427	3,2578	•	3,1922
432		2.8723	7,9756	2612.6		0.0582	2.5611		6.1386	•	9.11	0,1102
515	8.5763		5564.6	3.4922		0.8717	2,8379		0.1765	3,2286		9,1200
342	5,6567	2,4187	7,7283	3,4336		3,16	2,0258			2,44,5		8.E7.E
227	10 4 10 to	.23	1,1956	-6,1924		1111	1,2329	10.1030		-6,1348		0,0092
C + F 3 >	(TUL6/10/2) 11 0	_										
J Q R	: Tel20031/(4-303003)	1-3-3-63	(2012004)/(8+000004)	1000	4>	VA/5047(D/12)		SGRT (ND/12)	NSBRT(0/12)	0/12)	£14	CFFCCTIVE SLIP
1522	440.0	•	5,2156	n	3.1473	4, 0953		25,1661	101.155	•	.1037	101010
1420	5.4.5	0.5	5,1257	P	1973	6687.4		24,3242	916,6861		0.1010	0.000
140	25.50	•	(4) (4) (4)	n	1973	7766.4		23,3631	849.001	_	41110	1004
:2:2:	5,1539	0	4,2727	ń	1973	4,9933		22,3487	774.9967		1,1246	0,7769
1392	4,357		3,9113	ň	1373	4.9933		21, 3112	265.584		1200	0.7477
P & 6	3,932	4	3.7768	ń	1973			10,2373	632.587		.17.9	9,7104
348	3,325	4.5	K C 38. 77	ń	1.973	DU 10 . 4		19,1485	568.8376		1,1334	0.0079
762	2,533	2	2,9776	'n	2973	7766"+		17,7991	498.577		4242.	4.6401
516	1.8342	~	2,5278	ทั	1973	4,0933		19,9426	393.7533		11427	1,947.
504	1,649		1,3894	ฑั	1973	7566.4		13,3893	277.5638		1,1500	7347.0
515	1,5731	•4	2,1992	ń	1,1973	4,9955		14,9774	329,2836		0,1749	
340	449	±.	1.3433	คั	1973	4,9535		11,9824	219,4691		.1213	0.1011
227	48.00	2	2,2899	'n	1973	7756.4		9,2871	122.617	•	2985	•0.320

	_																2													
1961	V00 7,730	9	6400.0	0,3923	0.3832	0.3413	0,3072	6,2940	# 2:02	0.2783	6,2383	1.192.	9.6788	0.0190	6,8827		EFFECTIVE	W.7829	1.6677	0,0012	9,4402	0,6117	0.9826	9.544	9.4626	0.3672	0.2450	0.8772	*D . 1934	-0,2900
OCTOBER 1966		د	9.000				9.00		_			9.00		9.0	9.96	į	E T B	11300	0,1201	41169	11189	£ , 1249	,1209	,1257	. 1524	0,1072	.1369	-8.8084	-0.837	-18,0007
	. 0.380	•-	986.	8.6968	_	2.6996	£,5278	8.4538	6.489	0.4096	6,3859	F.1478	-3,8378	-F. 8618	-0.2080		0/12)													-
	LITTLE D. 0.980	ETA	0.130	2.5201	6.1105	.1186	£ . 1249	.1205	0.1257	.1524	2.1072	8.1365	-0. 6964		19.9916		NSORT (D/12)	852,8563	761,6867	403.0816	783.5620	151.9522	686.7674	955.1276	471.213	413.1102	325,658	274.336	219,4691	194,948
		31.19	8,7326	1.7889	0.7130	8.6762	6.6085	0.6245	9.5896	9.5165	£.4405	0.3212	0.1695	-6.6381	-6.1467	,	SQ47 (ND/12)	23,4521	1736	6309	1112	5142	996	297	191	6.3299	14,7190	2673	11,9824	,2175
ಚ	•	FROUDE NO.	7.8619	7,6260	7,3254	6,492B	6,6155	9966	, 1221	.3479	. 6110	. 2971	. 5315	2,0250	.7987			23,	22.	23.5	25.	29.	. 0.3	10.	170	16.			**	11,
HIGH SPEED PADDLEHHEEL	LITTLE D/D=0,1900	e e					•										VA/SGRT (D/12)	7,8638	6639	. 5638	2636	8638	9638	6567	. P636	. 1632	. 638	. 8638	. 6638	. 1638
, O33	וזננ סי	ă	_	•	•	_	•	_	-	_	•	_	-	•			× × / S	^	^	^	^	^	^	•	•	_	_	~	•	•
19 19 18	=	ž	9 . 3000	3.0000		4000.2	. 666.	2888.8	3.2007	6808.8				9			5	.5592	.5592	.5592	5592	5592	. 5592	5592	5565	2965.	.5592	.5592	.5592	5595
		¥	8.833	. 238	8,2312	2,2311	3,2319	6.2316	P. 7341	3,2473	2,2560	2,4335	-2,0125	-2,2325	-2,1426		?	•	•	•	•	•	•	•	•	•	•	•	•	•
	0.5,6638	LAMBDA SUB 1	6,2674	2,2991	2,2878	2,3238	2,3495	2,3755	42.42	2.4800S							(3-15-41)/(4H0+0+41)	7.2141	6.2847	6.5644	5.8452	5,2613	5,2357	4,7662	4.6324	4,7466	2,6878	1,2133	7,2698	V - 2457
er er en	13	11441	2,2000	Ç.	2,7,8,	2,2767	2.2283	2.2722	2,6762	2,8737	٠.	٠.	٠.	2.2.23				øC)	•	۲.	•			٠.	•	,	•		· F)	ur.
PROJECT NUMBER	OF BLADES=	I LITTLE N	22,2730	19,6667	22,5030	10,1507	0.00	15.6667	44,3333	12,1567	12.3567	9,6657	7,2233	5.6567	5,2333	I : (vcLPIC-)	(T-123)/(P-0-0-3)	6.622	4.08	5.424	4,252	3.761	10 S. W.	2.919	2.919	2.7477	1.649	-2.254	-2.4.5	# # # # # # # # # # # # # # # # # # #
07 12 14 17	NUMBER	# # # # # 7 10	1322	1195	1232	1292	6.5	942	29.00	7.32	642	12.00	10	. 4	352	# # 00		4422		100	1202	4242	270	t.	(((((((((((((((((((40	525	425	₩.	322

THE	THEMIS PROJECT NUMBER	BE# 1			H CH	MIGH OPEED PADDLEHHEEL	CHHEEL				0CTOSER 1960	2968	
MUMBE	NUMBER OF GLADES# 12	12	0.5,508		117	LITTLE 0/0=0.1600	.1000		LITTLE 0. 0.000			48- 2.68	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 LITTLE N	LITTLE H	T BOS YOURY	¥	쟠	9	FROUDE NO.	9, 0,19	ETA	•		ø	
1632	27,5082	1,7788	P.1008	8,3191		0,0110	9,8273	0.000		6,0450	9.000	0,2100	
156	2223.62	1,7222	3211.2	2,3235		0.0135	4.0340	. 000	0.0036	0.7478	9.800	0,2847	
1236	28,5883	1.7022	2.1342	2.8249		3.0162	7,3250	E.0490	8.1839	6,6120		0,1693	
1625	17,232	1.7207	6.1610	9.6298		0.0233	6.6751	0.0302	0.1105	£.5020		0,1420	
792	13,1667	1,772	652.2	6.2387		0.029?	4.7052	0.7911	0.1443	E. 3428		0,1103	
532	6.6333	1.776	4440.6	0.6511			3.1567	9.070	0.1500	0.2330		6.00.0	
265	6.562	1.7727	4004	8,2397		9.8766	2,3220	0.3769	B.1007	8.0980		0.070	
262	4,3333	1.7823	V400.0	2.4219		0.1634	1.9486	0.3653	6.0472	E. 0240		0.6473	
15	1.6667	1.7220	1,6522	-1,8129	9606.0	-0.2331	1.5956	• • • • • • • • • • • • • • • • • • • •	6.4173	-0,2048		-0,019	
7 F	O 11 (VOLP3CH)												
I AL O'	APA (TAINAUS)/(RUDADAGS)	(D.0000n	(0+15++4)/(8H0+0+4)		٧,	VA/808T(0/12)		S047(ND/12)	NSORT (D/12)	0/12}	ETA	EPPECTIVE SLIP	St. 19
1652	6659	ų.	3.7497	2	1316	3.3622		26.2202	1865.8784	•	.080.	9.00.0	
	5,331	~	3.5272		1316	3.322		6888.5	968.24		9690		
1238	V-10.4	•	2.6319	7	9464	265.8		2,6385	293.961		11035		
1222	3,5827	7	2 4465	~	2,1316	3,3022		20,6159	650,4072		0,1185	0.0074	
792	2,797	•	2,8254	2	1316	3,382		18.1438	500.442		2442	0,7313	
532	1.642	,	9019.	~	1316	3,382		4.8689	342,113		11500	2024.0	
398	16.9.2	•	1,0409	2	1716	3,382		.2.7475	251,7439		1097	7007.0	
262	2,1713	•	6.8293	2.	1316	3,382		10,4083	167.029		.0672	7777	
126	-2.8982	Ç	-2.26:0	~	1316	3,392		4.4556	.4.94		. 4170	49.004	

06109ER 1968	LITTLE D: 0,000 V6: 9,400	ETA 7 L 0	1,2000 0.8088		9000 0 0700 L	C. 6868 8.0888	6.5648 0.6000	6.4842 W.BBBB	0,2860 0,0000	0.0370 0.0000	-6.0496 0.0000	-6,1948		NSGR7(D/12) ETA EFFECTIVE SLIP	1832.7954 8.8948 8.8158	9640		000.4166 0.2624 0.7624	0.1006	0.1327 0.	4481.0	2,1107	0070.0	*8.1189	4706.44
		10. SLIP		8.6538	. 63	•						•		SB47(ND/12)	25,8199	24,1523	23.7171	22,7303	21,2132	19,6394	17,3295	19,2869	12,5831	11,1803	1.2421
PADDLEWHEEL	LITTLE D/D=0,1680	FROUDE NO.												VA/SQRT(D/12)	. 0533									•	25.00
HIGH SPEED PADDLEMMEEL	LITTLE	* * *	2000		2.0982	3.4636	. 32.67	3426.6	2.2692	3042 9	2000 3			/7A YA	. 1973	1973	1973	3,1978	1973	1973	1973	1973	1973	1973	7.00
	0=5,8626	SUB 1 KT		7,1766 3,8366				•			•	•		***)/(BEQ#0+**)	7,4637				5,5743						
	38.80	רב א רשאפטא		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								1,7262 1,		2:+0)	7.	7	•	•	5	,	2	2	11	•	e,
R alexan Follow Riving	OF 5LADES* 12	LITTLE N LITTLE		23,3333									LETECH II (VOLPIC+)	(T-12-+3)/[A-0+5+43)	9,2636	8.3-72	7.6.73	6.044	4,8559	4,825.	2,6433	1.4645	2,2541	-8.3497	A COM
A SITURE	*U*BE# OF	1 00 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1247								F4-00-11	1000	1000	1472	135,	1242	130	69.72	72:	555	t a t	3,5	3,6

S 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	FARTS PROJECT NUMBER	.			N XUIT	HICK SPEED PACCLEMMERL	133 HR3			_	06TUBER 1944	•••1	
m m	27 mSGOVIB 40 bGBmi	~	8888		717	LITTLE 0/0*0,1698	.1693		LITTLE 0. 0.208	9.00		460 7,733	
CC # 2000	1 11716 N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LAMBCA SUB 1	ţ	Ą	ô	FROUDE NO.	SL !?	67 à	-	ر	æ	
2500	22,5732	1.7787	2,2514	2,3365	3.2030	8.8495	8.3436	9.7386	1961	1,0700	8. 7286	3,3895	
77 P)	21,6567	1,77.82	2,2715	8.2371	6.3333	0.3497	7,7428	0.7289	3.1815	1.0170	6.2033	2,5270	
7644	19,2131	1,7727	2955	2,4352	3.3803	0.3554	7,3876	4084°	2 . 8 9 4 2	9,5882	9.2636	2,5322	
() () ()	19:1567	1,7.2	2,3238	2,0331	4.6223	9,3632	6.4928	0.6762	8.683	9.6378	3.0002	2,4232	
r. e2	15,5557	2.27.63	. 3532	2.2317	0.3530	0.3653	9.0568	0.6479	3.8857	6,5149	2.3483	0.44.0	
6		1.770	3,5672	3,5494	6.4023	11135	3,7523	8.4398	8.121.8	0.3210	3.0320	9,3845	
3.4.5	27 10 00	1,7,1	2.6921	8.6342	2,3232	3,1272	3,0375	9.3879	8.9958	A.1473	3.2803	8.2232	
	2.2.2.	22.4	サリサのでも	-6.3424	3.332	8,1211	2.5815	0.1596	_	-0,1220	8.3863	6,1443	
ひにまる様々	-	1,7:23	Part of ord	2667.8-	6 . 1783	2.0835	1.9659	-6.183G	-1.3178 -	- 3 . 3.3 £ B	3.3888	3.3970	
7.00	1-12-12-17-1	ö	(3-154)/(345-5	30043	4>	VA/5397(0/12	_	SQ4T(40/22)		1/12)	-	ñ	1138
251:	7,5735	10	17,4312	•	,5592	7,7638		,7171	871.421		7,000,5	6.000	
To a	7.650		2,7118	•	4,5592	7.763		23,2737	839.1464		0.1814	0.3730	
0) () (• (5.74.5	υr.	9.4523	•	4,5592	7.863		.2673	768.1427		2112	2.0427	
• • • • • • • • • • • • • • • • • • • •	4,5451		2,2733	•	4,5592	7,8638		, 1112	703,5929		0420	6,1149	
2:2:	3.650 E	٠,	7,5535	;	4,5592	7,6630		, 4124	449.497		1887	8.5792	
~ P1 40	2,2495		5,2156	•	5572	7,2638		.2619	PP		,1219	2,3330	
5::2	4444		3,9225	•	5592	7.2638		,5774	329,2836		9668	6.1731	
42.	-2.87.7	4	2,4722	•	5502	7,363		, 2248	271.158		1468	-1.11	
325	-2,3623	~ 1	2,9992	•	4,5592	7,363		11,5478	286,9591		,3178	-0.3131	

				4 i d
1000	869'+ ada	•		
OCTOSER		د		
	00.0	~		e e
	LITTLE	EYA		
		-110		
و.		of NO.		
HIGH SPEED PADDLEWHEEL	LITTLE 0/0:6,8488	FROUDE	ของ < จ จ จ จ จ จ ก ก ก ก ก ก ก ก ก ก ก ก ก	
SPEEG PA	177LE 0/	9		N •••••••••
1011	د	궆		2
		*	\$ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	8888.6.0	LAMBOA SUB 1	$\begin{array}{c} \omega \vee \omega $	
+ E	•	LITTLE H		Ω Θ Θ Θ
THENIS PROJECT NUMBER	OF 9LADES*	I LITTLE N		######################################
THEHIS	REBLON	1 8 1 9 1 0 0	ひに ちょう ちゅう ちゅう でょう なっちょう かっちょう はっちょう かっぱ でん ちょう でんごう はっちょう はっちょう はっちょう はっちょう はっちょう はっちょう はい	10 4464444 1 8688888888888888888888888888888888888

	:																8 116														
2963	VO- 9,488	•	6,3419	9,31,0		6746	2443	0.2222	0,1963	•	_	•	_	•	•		CFFCFTVE	10201	0.0171	0.0039	0,7842	6,7730	0.7914	1,734	. 7003	2000.2	0,9611		4000°	1.1098	
OCTOBÉR		د	•	ė,	j.			0.000		0.3000			1.600				ETA	11870	11191	1223	1337	. 1383	0,1917		1069	.1052		7647	1924		
	9 0.368	•	į	2,0163					Š	•	•	•	•	•			0/12)													_	.
	LITTLE DO	67.	8.2878	0.1191	2271	707.E	0.1917	9.1943	9.1689	9.1832	0.1879	0.1990	8.1924	0.00%			N\$08T(0/12)	1006.3207	929.926	964,966	787.586	748.776	664.2271					126 . 925		2	122.644
		36.19	6.0463	0.8283	2010.	4.47.4	1,7669	0.7569	4,7107	9.6499	9.5879		0.4176	0.2364	.0.3828		SGRT (ND/12)	4133	444	1620	5462	9848	9139	101	1409	7077	8114	7797	200	0779	8076
HEET	•	FROUDE NO.	•	B.9766	194.7	70070			9,2413	•	•	•	2,9313										23.						•	#	•
HICH SPEED PADDLEHHEEL	LITTLE 0/0=6,8666	2	0.0210	0.8226	0.0243	7.20.0	A 322	6239	0.2379	0.0445	0,0973	6.0693	6.3690	0.0334	2020		VA/508T(0/12)	•	4.0966		•	9999	•	•	•	•	•	0000°	•	4,7533	4,9933
HIER SP	111	ş	1,030	6.0000					٠,	0.000		9906	eae.	ě	000		٧.	1973	1973	1973	1973	1973	1973	1873	1973	1973	1973	1973	1973	1973	1973
		¥		9.9393													(***													'n	
	D#9,880	LAHBDA SUB 1	6,1597	2,1719	2,1847	6.2829	2.70.5	10000 A							1,3828		(D-124)/(RHD-D-+4)	5.8438	415		4.7788	4,5133	4,1852	3,9253	3,3629	2,7434	2,3894	•	•	3,3711	•
1 H 3 H	٠	LITTE	2,2003	.232	253	2,0			270	27.8	2.13	2.3	23	233	230				· Fis			~	~	R:	_			R .	_	•	•
PROJECT NUMBER	OF BLADES*	LITTLE N	5,833	•	ď,	22,3333	•	•	4.656	2		9				0 000	(Te12ee3)/(RHOeDee3)		7.2512	•	•		5,4382			•		1.553	996	385	328
THENIS P	O KREEN DA	200 H T T T T T T T T T T T T T T T T T T	1959	2442	1343	1222	3044	3 E 0 O 1 O	rş Qu	733	(%) (%)	6-0-5	425	15 E	192	2	100 700	. 25.5	1440	071		1162	1200	200	210	733	12 12 12 13 14	4 2 5	425	325	192

THEMIS	PROJECT NUMBER 1			NIGH ST	SPEED PADDLEWHEEL	HHEEF				OCTOBER	100
NUMBER	OF BLADES. 6	0.5.888		117	LITTLE 0/0.8,8488	•••		L1776 00	9.300		467 7,788
2 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 LITTLE N LITTLE	H LAMBDA SUB	4 4	₹	â	FROUDE NO.	9116	673	•	و.	•
1530	5.5289		8.8335	100.0	0.8287	9.1126	8.76.0	F. 2343	1,2718	1111	0.4547
1432	3.6333	6.2	8.8388	1.0000	0.3329	0.5178	1984	9.1684	1.2598	0.000	7*47
1342	2.2		0.3481	•	0.0345	7,9818	9.7366	ないれれている	1,1670	1.000	9,410
1246	2,5		P. 8417	•	8.8378	7,3854	8.7154	1.1571	1.0468	6.5000	1,3929
1142	9 6282		8,0449	~	. 9382	6.7898	8.69B4	0.142.0	4.9472	9.2486	9,000
1248	7,3333 2,2	٠.	6.3515	_	0.8447	6.194	9.650.	E. 1934	6.8942	0.00	8,3265
938	5,5202 2,2	5.	0.4582	•	8,5523	5,5300	F.6285	0.2162	9132		3600
366	3,1667 2,2	•	8,8833	-	8.8662	4,7852	0.5532	0.2012	64.40	8.00.0	0.2748
732	2,1667 2,2		0.0673	•	9.8631	4.3470	8.5169	8.2574	6.5823	7070	0,2273
299	2,2	٠.	8.2556	-	8.8370	3.9369	7,4652	£.2568	4.3932	8.6368	0.1755
618	3,1667 2,2	4	£ ,244%	•	0,0514	3,6331	0,4214	0.2482	6,2668		2421.0
505	2.2	63	0.9279	-	9779	3,1567	8,3341	0.2067	6,1278	0 202 . 0	8,3852
425	2.25		8.8332	-	0.3212	2,5313	8.1695	9.029.9	9.69.6	6.00.3	8.6298
255	~	FI	-0.8654		. 808.	1,5108	.0.3841		-		0000
) (C)											
	(Te12003)/(RMD000003)	(0=12==4)/(AHD=D=+4)	•0••4)	4	VA/5047(D/12)		8047 (ND/12)	NS04T(D/12)	/123)	ETA	EFFECTIVE SLIP
									•		
3061	2000	//D/*/	•	7400						757	
26.00	26.20.00	7,87,7		7660				763.001		***	
400	18,3267	7,062		2000	3003.		2016.2			2010	
1542	7.4223	1621.0		2666			200			177.4	7/40.0
200	0 10 10 10 10 10 10 10 10 10 10 10 10 10	20100		7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	•						
	7 60 00 00 00 00 00 00 00 00 00 00 00 00	7000	•	2000	•			7.77.77	•		
200	77.0.0	4464	•	3774	•		7 7 7		•	7017	
	20 4				•			73.	•	144	454
75.	9 4 4 6				•			424.8283		845	****
300	7000	*****		1000	•		407	101	•	246	
2 1 2	9 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	**************************************	•	7.00	•			A 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2067	2000
3 6		340 T		460	•			27.41			
₩ (ř	, 22V.C.	9 4 6		7 6		9 6		7475
6 X 1 4	.74		ř	3466	•				•		
11 CH 18											
3 1 1 2 2 2 2	CAFTRY JCB 6. USER (SEP.6)	51 LOCGED OF	TY41 1855	15 2-JUN-78	-76						
362676	DALL 2 FILES (INCLU	146 UF", 11.	DISK BLOCKS)								
1111111111111111111111111111111111111	235 62'SE 'VIA 2 3										

			a	
***	***	•	1	
#260:30			00000	
	986'9 80	٠		######################################
	LITTLE	EYA		
		86.18		
בנר		GOUDE NO.		8 4 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
D PADDLEWWEEL	E D/0=0'1699	9		
MIGH SPEED	LITTLE	¥		
		¥	#####################################	nnnnnn:snnnnnn
	0.5,888	LAMBOA SUB 1	00 00 00 00 00 00 00 00 00 00 00 00 00	4 4 4 MM W W W M H M H H I I I I I I I I I I I I I I I
1 TES 1	•	LITTLE H	S	
THEMIS PROJECT NUMBER	OF BLADES#	ו נודדוב א	### ##################################	ବ୍ରଥ୍ୟ ପ୍ରକ୍ରଥ ରେ ମଧ୍ୟୟ ସ ଓ । ବ୍ୟସିତ ପ୍ୟକ୍ଷ ବିଷ୍ଟି ପ୍ୟକ୍ଷ ପ୍ର ବ୍ୟସିତ ପ୍ୟକ୍ଷ ବିଷ୍ଟି ପ୍ରକ୍ଷ କ୍ଷିତ୍ର ବିଷ୍ଟି ବିଷ୍ଟ ବିଷ୍ଟି ବିଷ୍ଟି ବିଷ୍ଟି ବିଷ୍ଟି ବିଷ୍ଟି ବିଷ୍ଟି ବିଷ୍ଟି ବିଷ୍ଟ ବିଷ୍ଟି ବ
- SIMBIK	VUMBER (7 E	14444 2000000000000000000000000000000000	# 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MIGH SPEED PADDLEWKEEL	0=5,882E LITTLE 0/0=8,1868 LITTLE 0= 8,588 ye= 5,488	LAMBDA SUB 12 KT KL KG FROUDE NO, SLIP ETA T L O	1,0010 D. 00.0001 D. 00.0000 D. 00.000 D. 00.0	2573 2.4522 3.00007 8.00466 5.74356 6.7440 6.1444 6.74556 9.0000 6.2443 6.74527 3.0000 6.2446 6.7457 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1466 7.7647 6.1677 7.1647	0:12:0:4)/[RHO:00:0:4]
*	ı,	AMBDA SUB 1 KT		で	
PHELIS PROJECT NUMBER 1	OF BLADES= 6	I LITLE N LITLE M	20000000000000000000000000000000000000	10000000000000000000000000000000000000	######################################

					ž
\$601	100 7,748	•	0000 0000 0000 0000 0000 0000 0000	8	E GOOGERACH CHARLES OF THE CONTRACT CON
0C108CR		ظد			
	006.0 +0	•	4444		•
	LITTLE 0	54.5	6.11.0 6.11.0 6.11.0 6.11.0 6.10.0 6.		
		1198			0 000000000000000000000000000000000000
		Š.	4446	- WWT 404 0000 - Wwo 20 w w o w o w o w o w o w o w o w o w o	
ופאצפר	0/0-0,1000	FROUDE		6 8 8 8 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	~ ************************************
HIGH SPEED PADDLEHHEEL	LITYLE 0/0.	9		**************************************	
HIGH SP	L11	캎		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 00 00 00 00 00 00 00 00 00 00 00 0
		¥	######################################	9 69 69 69 69 69 69 69 69 69 69 69 69 69	************
	•	#1 10	44046	n ⊶un nu 6. E. to ao nu an an	
	0.5,6603	LAMBDA SUB			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 43g	•	LITTLE H	# # # # # # # # # # # # # # # # # # #		60 60 90
THERIS PROJECT NUMBER	OF BLADES"	LITTLE N	22. 22. 22. 22. 22. 23. 23. 23. 23. 23.	1	11.0
THEMIS	NUMBER OF	00 10 11 10 10 10 10 10 10 10 10 10 10 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 4 20 20 20 20 20 4 20 20 3 20 4 4 4 20 20 20 40 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	1 0 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6

7HE # 1 S	THENIS PROJECT NUMBER	1 1100										
NUMBER	OF BLADES*	•	0.5,8686		177	LITTLE 0/0+8,1688	11600		LITTLE 0	0. 0,00		V8 1.60
1 1 1 1 1 1 1	I LITTLE N	LITTLE N	LAMBDA SUB 1	*	ŧ	ā	FROUDE NO	o, SLIP	ETA	-	د	•
1626	6.666	.760	1443	3.6181	•	•	9.5285	0.000	0.0092	0.7510		9.100
1572	25,2207	26	000000000000000000000000000000000000000	3,3177	•	4.0129	6.9348	69.4	0.6755	6.6478	0.000	1007
1476	~,	•		2,6189	•	0.0137	8.3384	•	•	E. 6818	0.800	_
1182	19.6667	720		0.3245	2	0,6178	7,0202	•	0.0961	0.5540		0.1679
1272	21,1667	201.	•	8,4225	•	0,9161		•	ت	1,5290	6.6859	
1643	17,3333	.777	•	3.2296	0	E, 3212		•	æ	6,5200		
326	15,5727	.723	•	£,2329	•	9,9252		•	•	0,4620		
298	14,3333	.722	•	0,2375	6	9.2289		•	•	5,4588		
256	13,1667	.720	•	3,2399	e.	9250.9		•	•	E . 4648		
712	11,6333	,778	•	3.4453	e.	0.0379		•	•	0,3789		
625	12.4167	7:2	•	8,2493	ď	P, 84.32		ij	•	6,3120	. 5000	
535	9,9167	.722	•	C. 3495	e.	0,8427		÷	C.1796	0,2318	. 9000	
425	7,2833	.72€	•	e.4628	6	9.96.0		5	0.1790	E . 178	0.0030	7.00.0
252	4.1667	.7:	7,6671	0.1144	6	9,0918		•	E.4117	9,1166	2.0000	9 8367
261	3,1667	21.	•	E . E 393	9	7,0635		ė	9.2405	4.0238	0.000	\$
in in vi	2,5833	366.	•	-6.4158		-8.8477		i	4.6363	00,1320	9.00	F
	PETERO III (VOLNICA)		3									
1 2 7	11/150021011		~***D*D** / (****)	(* • • • ·	<u>«</u>	WA/SOM (0/12)		27/0K) (#0/75)	450M1(3/25)	1/25)	ETA	CLECCTAE STIL
1622	5.35	597	3.0974	8	1316	•		6672.62	1832,795	•	.0092	0.0772
15:2	•	175		N	13316			25,8606	968.2450	_	1,8799	3,060
1472	4.29	25		~	1336	•		24,1923	983.696		. 0016	0.8307
1.0 %	3,9538	d'A		~	1316			22,1736	761.686	_	1968	0.0335
1272	4.2.36	36		~	1316	•		23,0636	E19.781	•		0.0493
1248				2	1316	•		20,6167	671.317	_	11100	0.0211
936		72		2	1314			19,6850	606.312	_	.1160	6.7888
962		91		Ň	.1316			10,9297	555.427	_	1203	0.7736
202		33	•	2	1316	•		10,1436	569.042	_	1961	0,7913
718		426	•	Ň	1316	•		17,1998	700.004	_	1387	0,7233
625	2.25	57	•	_N	1316	٠		16,1374	484.43%	•	151	0,6097
535	1.64	9.6	•	Ñ	,1316	•		14,9324	240.640	_	12796	6,4320
425	1,2704	•	1. U. L	~	1316	3,3822		13,3873	274.3363	_	.1790	0.5370
25.5	•	64	-	ณ์	1310	•		10,2062	161.374	,	1411	9,2142
261	4	다 (64	.1316	•		9.6976	122.644		-	6 % PO " 0 -
475	-1.156	2	-2,1327	N	1320	•	~	. 636	200.022	•	. 636	-0.2674

				e
100	000°+ 40A			
OCTOBER		. ـ		
	0.000	•		0
	LITTLE	ETA		
		St.1P		
1334	0691	FROUDE ND.		8 NNNNHAAAAAA
HIGH SPEED PADDLEWHEEL	TLE 0/0"0,1600	ă		A 444444444444444444444444444444444444
1911	LITTLE	7	**************************************	V A A A A A A A A A A A A A A A A A A A
		¥	######################################	***************************************
	0.5,3983	LAMBDA SUB 1		######################################
1 438	•	LITTLE H		
THEMIS PROJECT NUMBER	OF SLADESE	I LITTLE N		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
THEHIS	NUMBER	1 8 8 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3

)				mism srttu fauttumtt.	ENHEEL					F360130		
Color Colo	NUMBER		د			LIT	11E 0/0+8	.1688		5		•		V0- 5,46	9
10.0007 1.7000 1	METHOD MPH	ו נודדנב		DA SUS	¥	\$	ê	FROUDE A			_	•		0	
	6	22.4447		•	TAL		0.0356	8.1003				"		•	
15.000 1.772	200		• "	•	9 8837	•	7679	7.264		•		•	1000	0.4200	
15.0000 1.7700 1.7700 1.7000 1	9 6			•						•		•	0.000	AND A	
11.6.337	301	770000		•	262.5					•				1720	
12.0003 1.7002 2.2040 8.7003 2.2040 8.7003 1.7002 2	1 ()	700001	•	•	2000		4360.0			•		•			
13.6667 1.7722 7.7324 7.7882 8.7874 8.8950 9.4884 9.1484 9	366	10.5757		•	9662.2	ų		7. C		•		•			
13.0004 1.7272 7.3469 8.2957 8.2787 8.2889 8.2899 8.2889 8.2899 8.2889 8.2899 8.2889 8.2899 8.2999 8.2899 8.2999 8.2899 8.2999 8.2899 8.2999 8.2899 8.2999 8	926	15.2082	٠.	•	2.2583	e.	6269.3	9,3064		•	4261	•		2487	
11.7222 7.3666 8.7225 8.7224 8.7224 8.2225 8	626	13.6667	۲.	•	P. P. S. P. P.	6)	8.8569	4.8835		•	345	ŗ		1,2313	
17.72 17.7	740	11.6.4.4			0.255	•	2.8667	4.2287		•	1438	•		0.2273	
1.7727 7.0073 1.	20.7			•	0 25A4	7	9.3783	3.722			1497		0.6730	1.2867	
11/7027 7.000 1.7722 7.000 1.77	1		•	•				4100		•	442	•			
0.8333 1.7227 7.6629 8.1844 8.1843 8.1844 8.	000	2.4.07	•	•	3/0000	•	0.7.0			•		•			
5.2007 1.7727 2.6624 5.2007 5.	414	6.8333	٦.	•	P.1144	•	8.1192	2,441		•	2107	?		27.0	
1,7227 1	335	6.4167				٠,	0.1732	.293	••	•	2199	•	. 1911	1633	
1.7727	2	4.0	. "	•		•	1981	411	_	-	996			1.1052	
1.0702 1.702	1 6		•	•		•	2 2 2			•		•	•	4444	
11 (V) POTO 1 (RHO-Deed)	9 0		•	•		• '				1		•	•		
11/VCLP/CT-1 (Tailor) (Dailor) (RHO-De-1)/(RHO-DE-1)/(RHO-DE-1)/(RHO-DE-1)/(RHO-DE-1)/(RHO-DE-1)/(RHO-DE-1)/(202	. 4	`.'	•	ş (•	19000	9		•		•	•		
11(V)[P[C]] (T4120-61)/(RHO-Do-4) (T4120-61	236	550	•	•			3232.	2	•	•		Ş	•		
Trivelster Tri															
4.04000 4.0	b	TICASIE				;	******		************					271014144	
0.2720 0.2720		T+12++3)/(2 FO + CO + CO > CO + CO > CO + CO + CO + C	•		4	VA/3671	7777	77/04/1508		2	7757	:		
122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.1	¢1		-		•	4.053			6	7.8742	6	_	0.7033	
1.02	13 I			() · · · · · · · · · · · · · · · · · ·					20 8443			•	•	***	
1000	228	12.6		7.5452	วัง	2775	200	21	201/122	. 1		9 6	•		
0.010	100	7.75	-Q-	6.5487	'n	1973	266.4	מ	22.0017	7		9	•	267/3	
0.0000 0.0000<	840	7.91	13	6.3717		,	4,953	n	28.6167	•	1.3171	9	48	3,7167	
### ### ##############################	000	6.75	4	5.4868		•	4.953	17	20, 3101	3	19.8423	•	7	A. 7824	
10 10 10 10 10 10 10 10	0.0	7 4		4 0 5 5			4.053	P	19.3649		18. 8475	74		0.6726	
2.2207 2.	2	5 i	1			٠,						•		4444	
No.	826	53.5	9	4.4248		•	70.0	2	700.05	n '	1.00.42	A	₩.		
2.6476 2.6476 3.1416 3.	712	2.5	•	8,9933		•	4,953	n	17,1998	4	10.3838	•	•	2000	
1.9769 2.2267 2.1289 3.11916 3.11916 4.9988 10.6776 2.1289 3.11916 4.9988 10.6769 4.1562 4.1562 4.1563 4.15	A28	2.66	*	3.5300			4.953	m	16,1374	7	3.4350	43	•	8.3269	
1.1562 1.269	100			4 7 7 8		•	150 7		48.55.41	22	15.8761	•		6165	
A A A A A A A A A A	040					• •	7 90 7		2701	36	45.44	•	77.5	-284	
1.1562 1.7504 1.	1	77.7		A07707											
2,6566 1,4622 3,1974 4,9944 12.10621 229.1917 0,1998 6.0944 12.10621 229.1917 0,1998 6.0944 12.10621 2.10631 12	500	1.15	2	1.7699		~	200	2	12,000	•	1016	B (
	155	3.65	9	1.4672		**	4,953	n	129172	22	9.1515	٥	1265	0000	
0010014 0000 1014 00000 1014 0000 1014 0000 1014 0000 1014 0000 1014 0000 1014 0000 10	E 15	6.23	•	1.1062		•	1.953	P)	11,7260	21	3.0141	0	1000	1657	
1	346	10.0		2455			F. 00. T	-	16.5279	13	1.656	• 1	83.68	-6.112B	
	200	11.00	-1	110303		٠	2	•		•	,	•			

THEFTS	THENIS PROJECT NUMBER	1 233			*2 HOIT	HIGH SPEED PADDLEHHEEL	EVHEEL				OCTOBER 1968	1961
80 E	0F 6L4055#	•	0.5.8628		111	LITTLE DZD##,1685	.1685		LITTLE De 6.000	9. 6. 6		ve- 7.700
*E***	I LITTLE N	LITTLE H	LAMBDA SUB 1	*	₹	ъ 6	FROUDE NO.	0, SL1P	ETA	-	د	•
1222	26.3333	1.7223	2,2893	3,3488	3363.3	8,0555	7.2563			1.1763		0.5940
(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	18,5722	1,7325	13 15 15 15 15 15 15 15 15 15 15 15 15 15	60.00	9.00	F. 8645	6.6111	9.6828		1,8150		0.0074
787.8	136.67.72	2007 T	50836	A	2 6 2 6 2 6	1000	4014707			9760		
224	644.62	1857 T	2 AAAA	2000	. 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.5065		2000	800		1,4237
, C	11,3333	1.77.27	29195	2,2942	9.29.00	B.129F	4.9581			0.7050	B. 80KB	0,4830
100	9.8363	1.7732	0.0659	2,2863	S	3.3871	3,1967			2.3938	002.0	0,1693
612	12,1557	1,7722	7,5786	2,1392	3.2002	9,1117	3.6331			£.6583	9.000	0,2790
4 6	6.27.7.6	1,7233	0,7353	2,2275		8.3631	2,0585	8.2647	e.1623	6.1849	9.00	2160,0
4.4.3	7,3133	1.7227	0,9422	-2,2373		8.8484	2,6236		-8.6678	-F. 8238	0.00	9769
375	5.555.9	1.7727	2.9412	-2,2621	6.6369	9,2217	2,2335		-1.2999	-e.1378		0,0207
310	5,1667	1,7027	1,1386	-6.1777	9030.0	0.9602	1,8463	-0.1386	12.7169	-0.2778		0,0692
CHALLA	CHERT IT (VOLPICE)											
ir o	(Te12003)/(Audebec3)	C0.00.07	(3-15-+4)/(4HD+D+4)	.04)	4 >	VA/SORT (D/12)		SORT (ND/12)	NS3RT (3/12)	0/153	C1 4	CFFCCTIVE SLIP
1228	6.477	4.	9,5576	ţ	,5592	7,8638		22,5462	787.5866		1,1272	1,1954
1110	7.2439	·	9,2236	•	5592	7,763		21,5658	716.5819		1251	0,6219
100	6,4323	* 0	7,6992	•	5592	7,7638		97,0200	5634.879		0,0109	1000
922	6.5944		8.3187	,	5592	7,963		19,5789	593.8574		,1521	0.9433
747	5,7737	4	7,2567	•	5595	7,263		17,7951	496.5779		1,1847	B.4471
6.6.	5,231		5,9527	*	5592	7,763		16,8325	438.938		1,1892	7,3023
14 14 18	2,674	9	2,3319	*	5592	7,263		14,8665	342.113		, 3290	1635
9	4,696		4,7798	•	.5592	7,763		15,9426	393.7533		1,2843	0,4112
 	3,7422	2	1,6314	•	.5542	7,663		14,1421	339.838		1,1623	0,1246
277	-7,1541	-4	7,9735	*	5542	7,7632		13,5481	204.0190		-0.8676	6.0450
375	-5.57	^	2,3543	•	. 5592	7.963		12,5636	242.861		-1,2998	-0,1205
315	-1.976	ø	2,2835	•	2565	7.8632		11,3652	200.1041		-12,7163	-6,3554

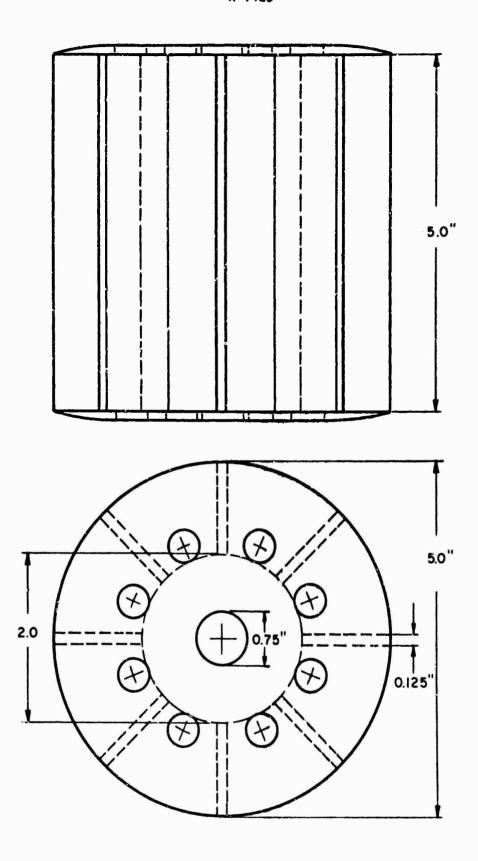


FIGURE 1. MODEL PADDLE WHEEL WITH FIXED RADIAL BLADES AND END PLATES

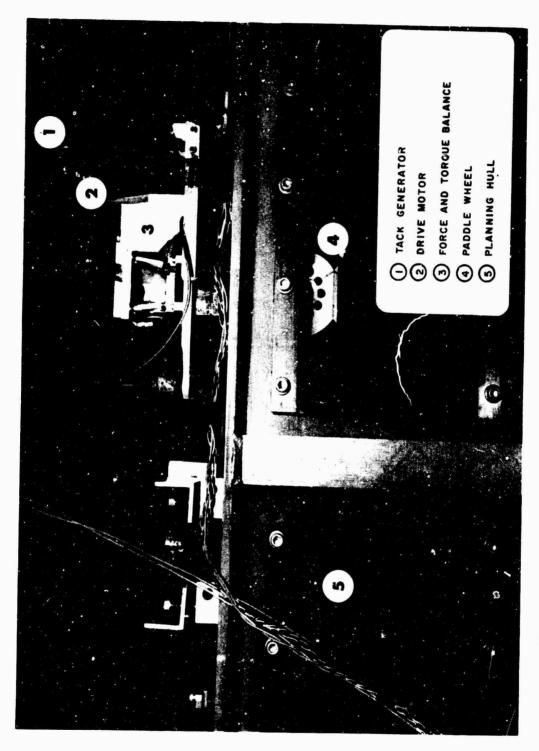


FIGURE 2. PADDLE WHEEL TEST ASSEMBLY INSTALLED IN WATER CHANNEL

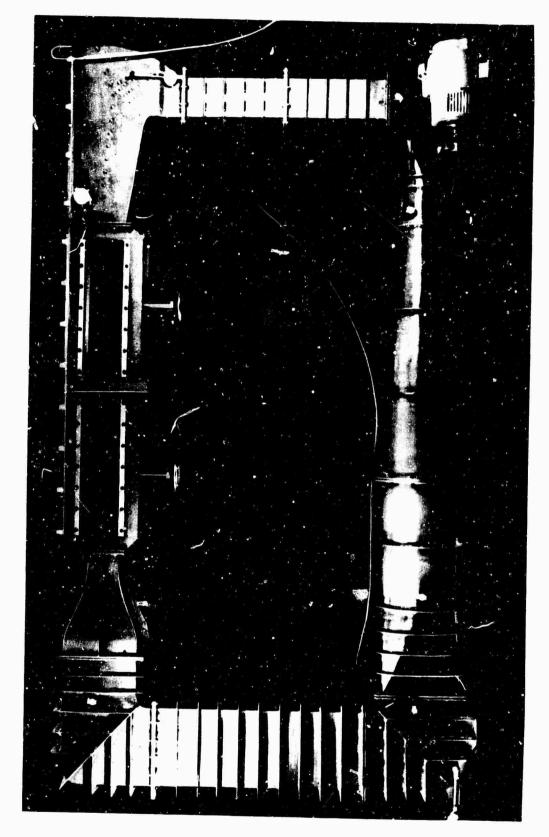


FIGURE 3. DAVIDSON LABORATORY FREE-SURFACE VAPIABLE-PRESSURE WATER CHANNEL

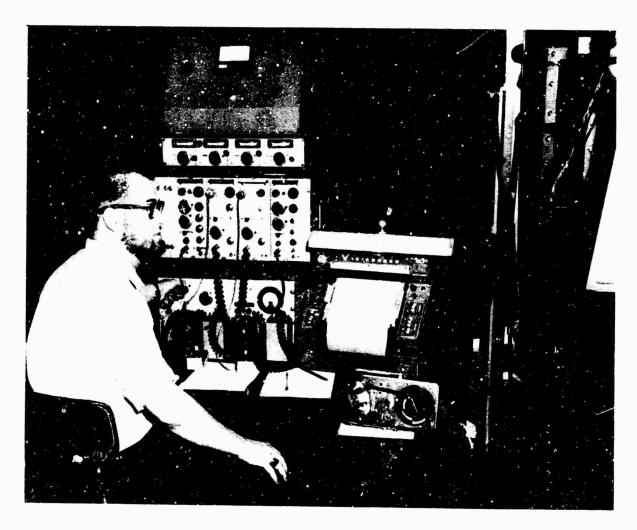


FIGURE L . RECORDING EQUIPMENT FOR WHEEL THRUST AND TORQUE, AND WHEEL SPEED CONTROLLER

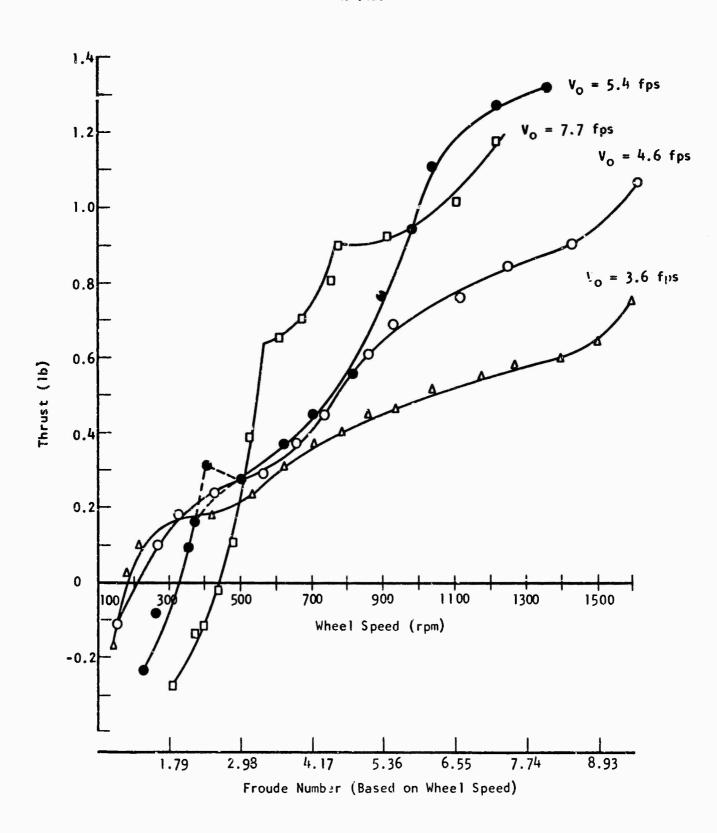


FIGURE 5. WHEEL THRUST VERSUS WHEEL SPEED FOR VARIOUS ADVANCE VELOCITIES (Vo), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

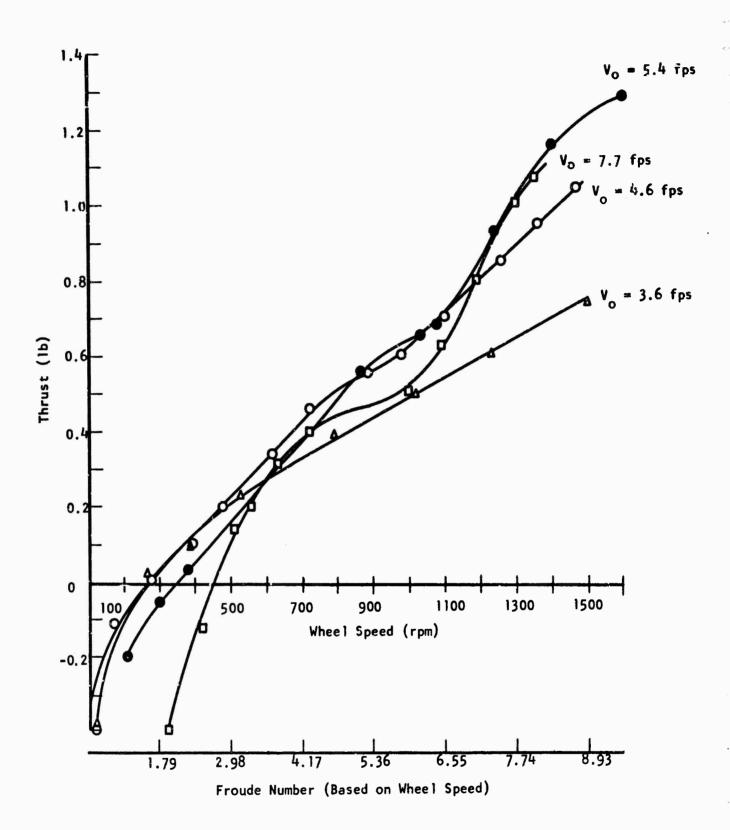


FIGURE 6. WHEEL THRUST VERSUS WHEEL SPEED FOR VARIOUS ADVANCE VELOCITIES (Vo), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

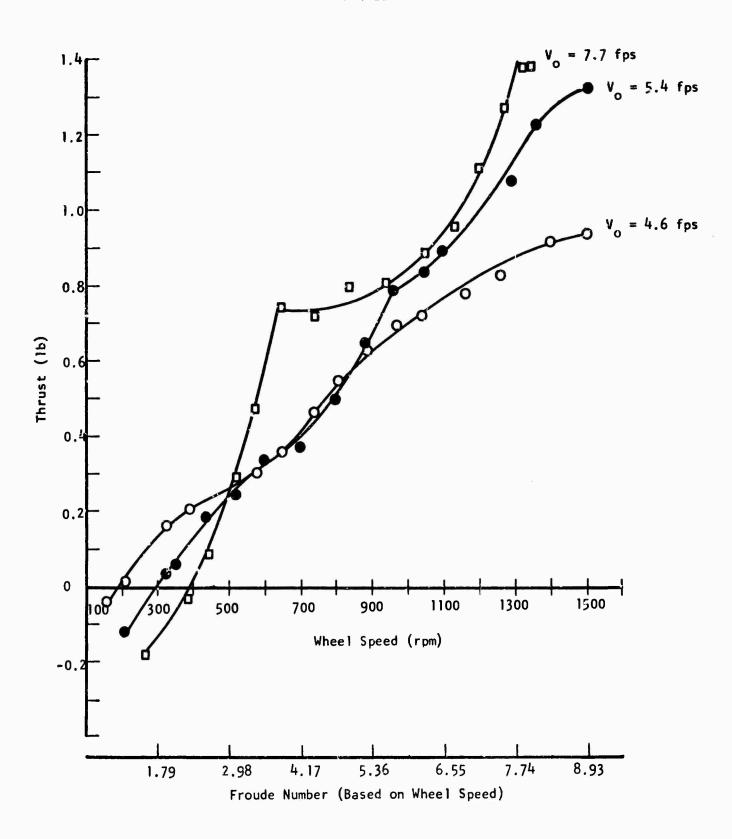


FIGURE 7. WHEEL THRUST VERSUS WHEEL SPEED FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

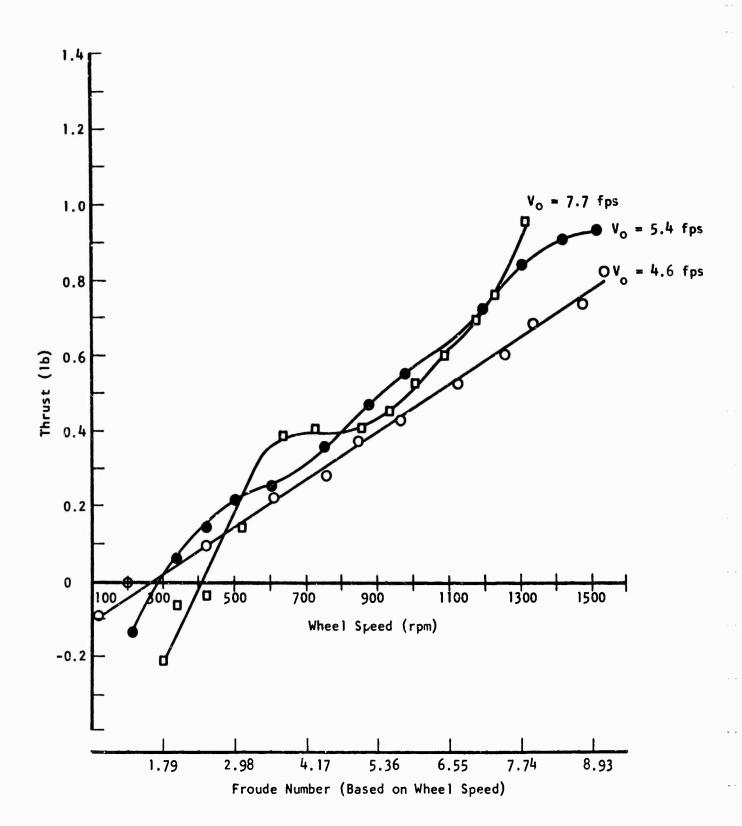


FIGURE 8. WHEEL THRUST VERSUS WHEEL SPEED FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 12-BLADE WHEEL WITH A BLADE !MMERSIGN DEPTH OF 0.50 INCH

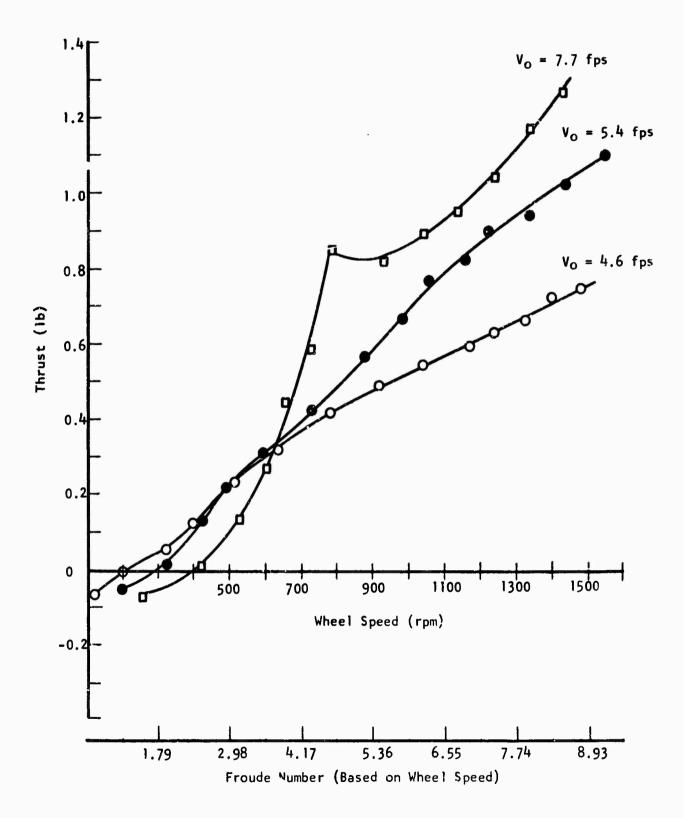


FIGURE 9. WHEEL THRUST VERSUS WHEEL SPEED FOR VARIOUS ADVANCE VELOCITIES (V_{o}), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

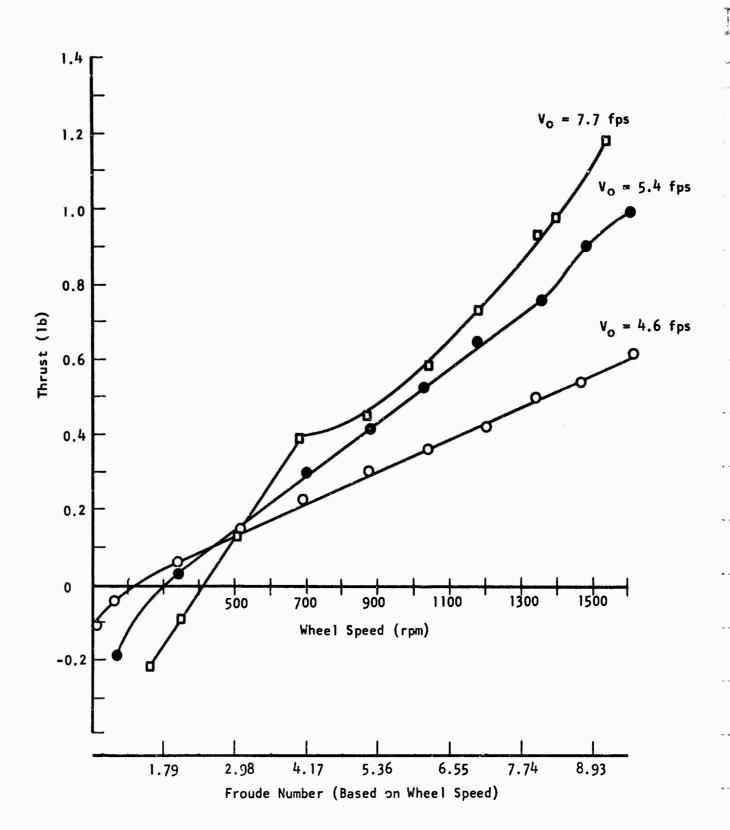


FIGURE 10. WHEEL THRUST VERSUS WHEEL SPEED FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

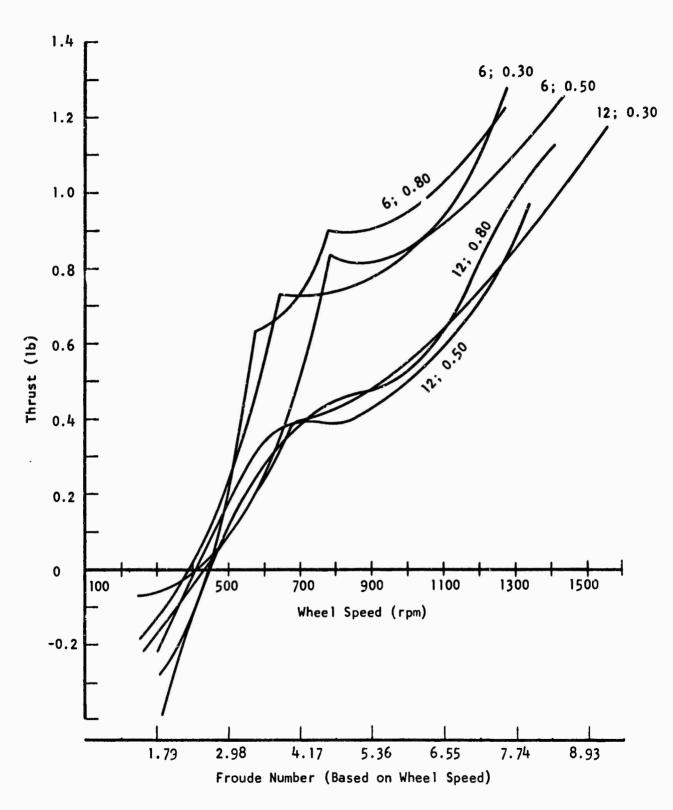


FIGURE 11. COMPOSITE OF DATA PRESENTED IN FIGURES 5 THROUGH 10: EFFECT OF NUMBER OF BLADES AND BLADE IMMERSION DEPTH ON WHEEL THRUST, FOR AN ADVANCE VELOCITY (Vo) OF 7.7 FPS (THE FIRST NUMBER BY EACH CURVE INDICATES THE NUMBER OF BLADES; THE SECOND, THE IMMERSION DEPTH IN INCHES)

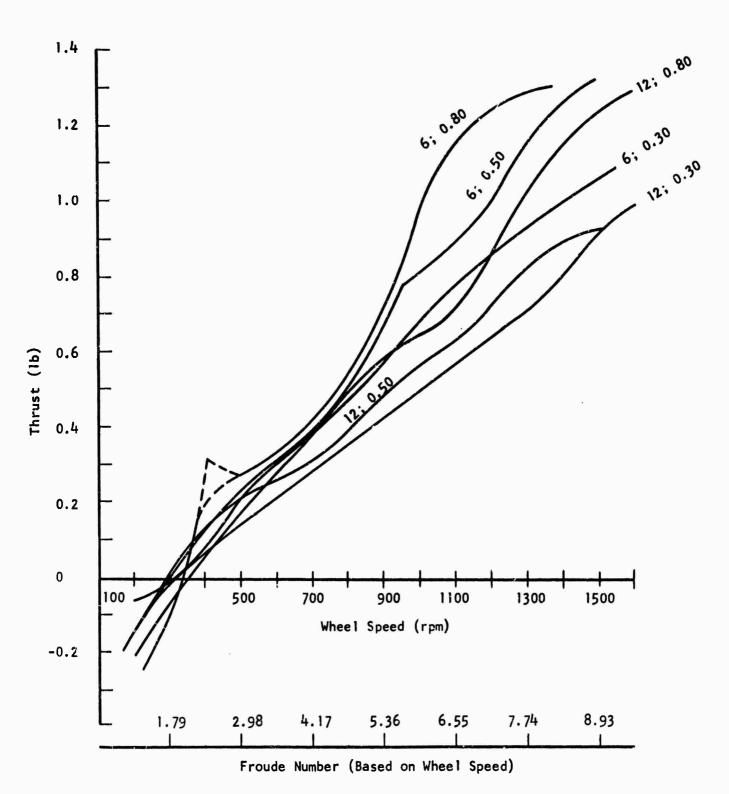


FIGURE 12. COMPOSITE OF DATA PRESENTED IN FIGURES 5 THROUGH 10: EFFECT OF NUMBER OF BLADES AND BLADE IMMERSION DEPTH ON WHEEL THRUST, FOR AN ADVANCE VELOCITY (Vo) OF 5.4 FPS (THE FIRST NUMBER BY EACH CURVE INDICATES THE NUMBER OF BLADES; THE SECOND, THE IMMERSION DEPTH IN INCHES)

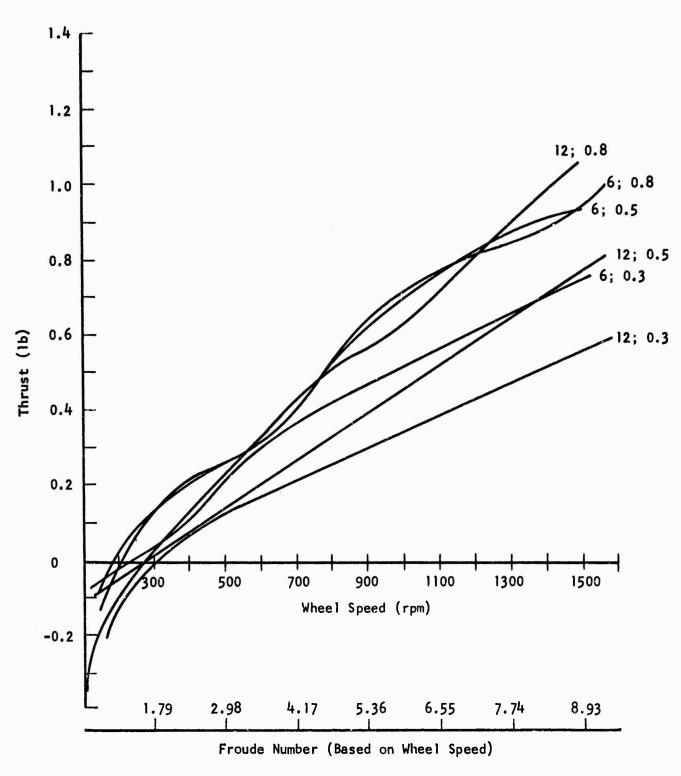


FIGURE 13. COMPOSITE OF DATA PRESENTED IN FIGURES 5 THROUGH 10: EFFECT OF NUMBER OF BLADES AND BLADE IMMERSION DEPTH ON WHEEL THRUST, FOR AN ADVANCE VELOCITY (V_O) OF 4.6 FPS (THE FIRST NUMBER BY EACH CURVE INDICATES THE NUMBER OF BLADES; THE SECOND, THE IMMERSION DEPTH IN INCHES)

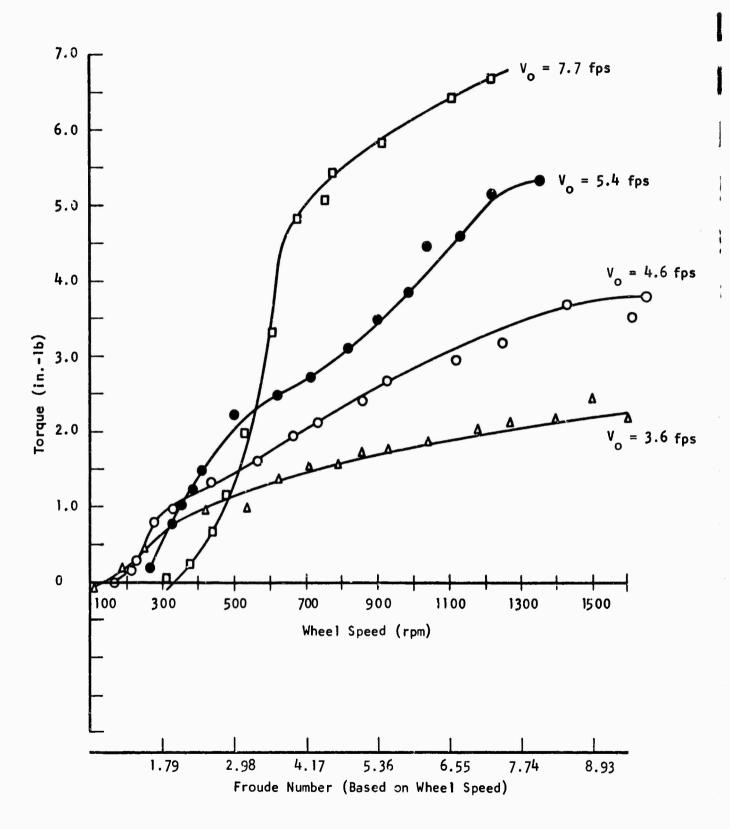


FIGURE 14. WHEEL TORQUE VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

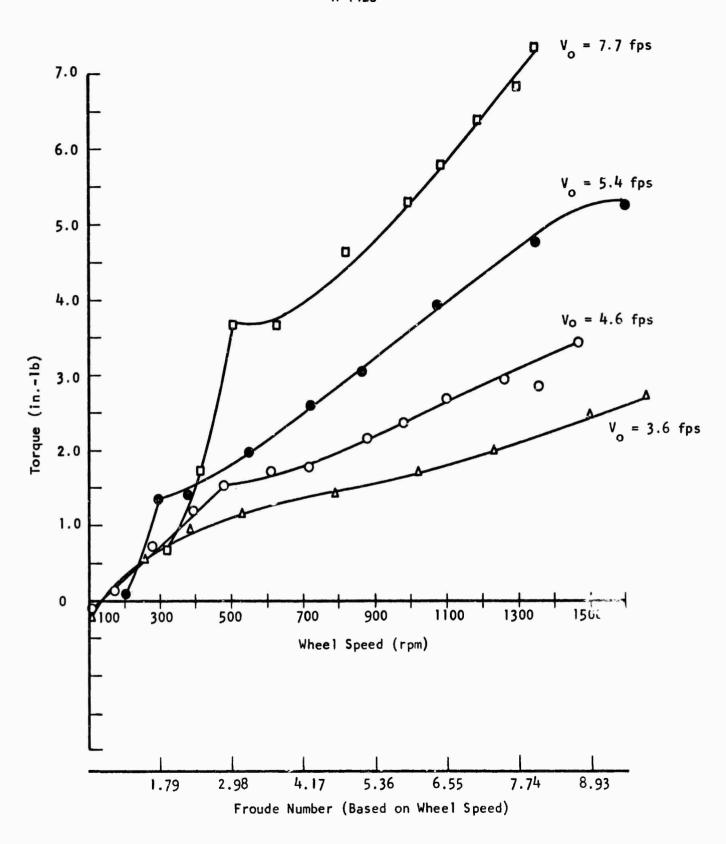


FIGURE 15. WHEEL TORQUE VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

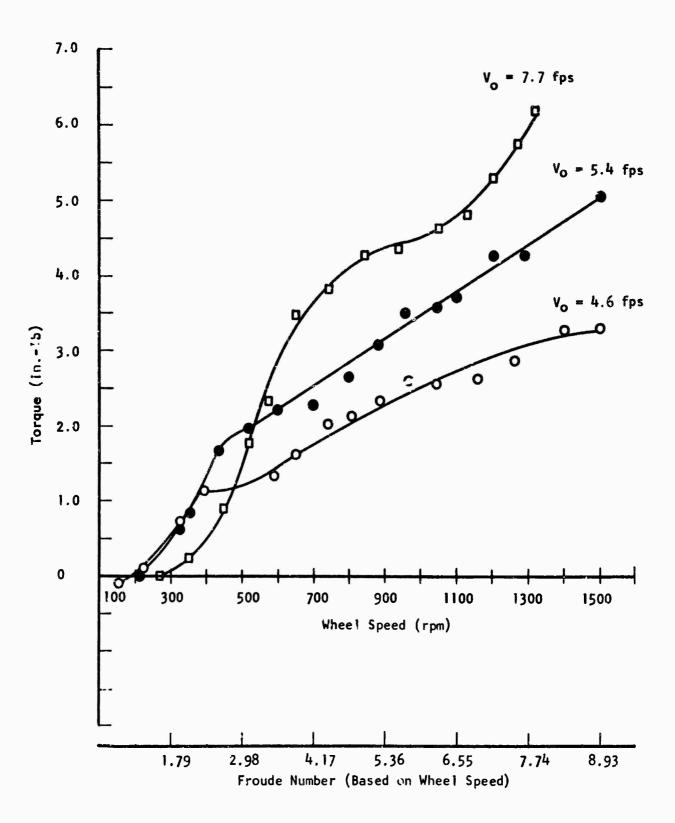


FIGURE 16. WHEEL TORQUE VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

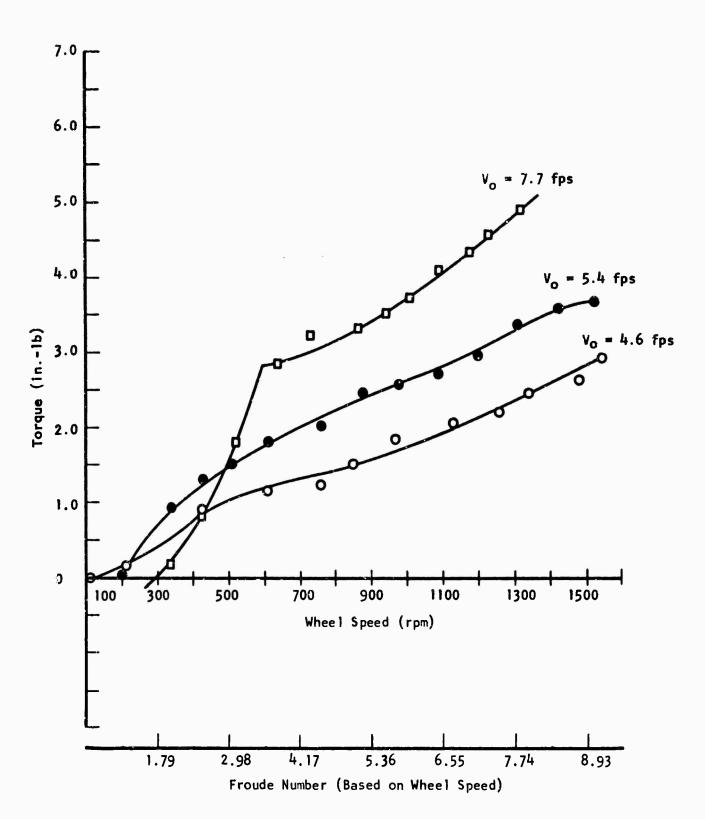


FIGURE 17. WHEEL TORQUE VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($\rm V_O$), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

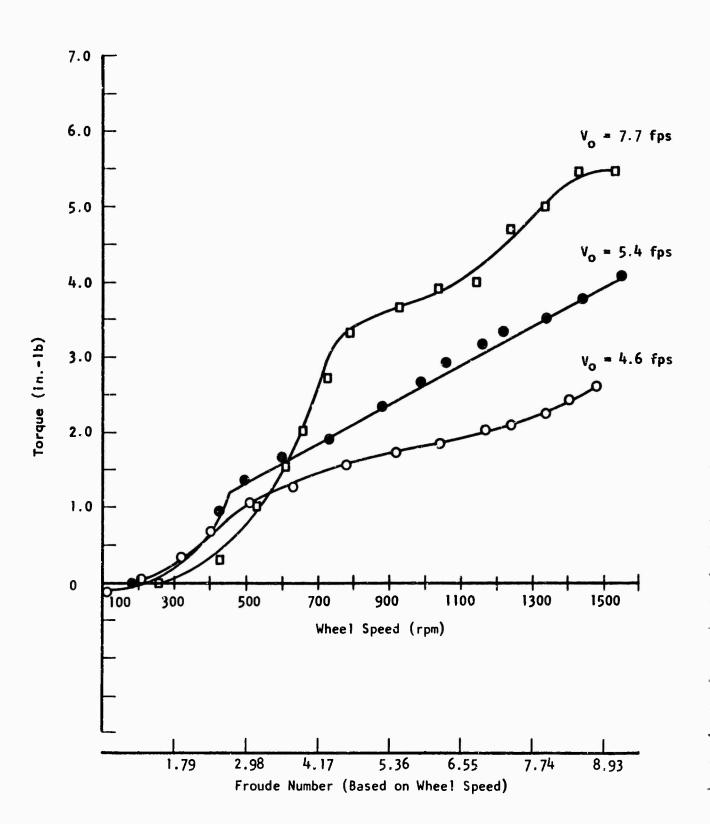


FIGURE 18. WHEEL TORQUE VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

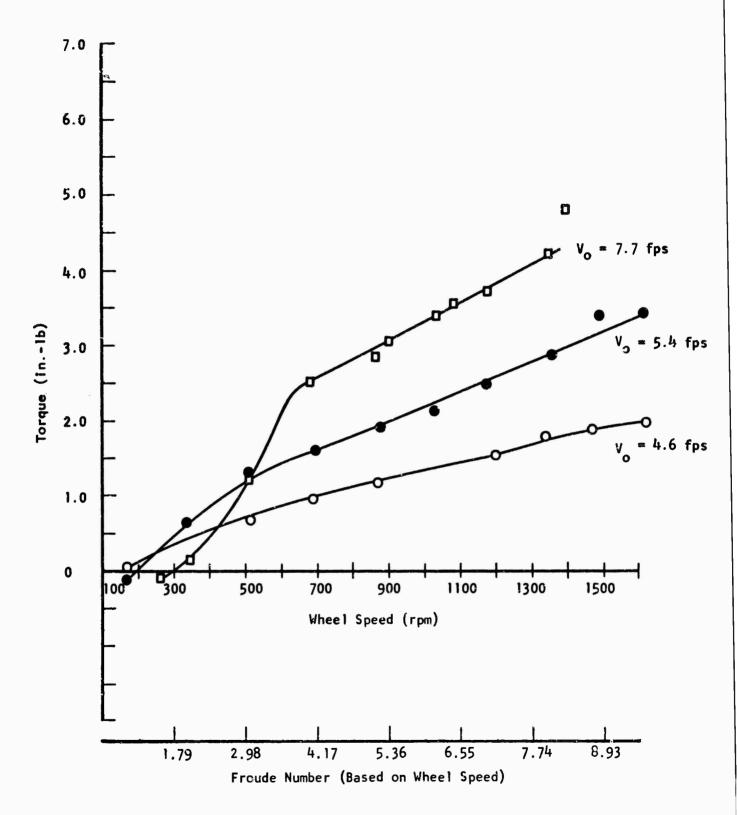


FIGURE 19. WHEEL TOPQUE VERSUS WHEEL RPM AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($\rm V_{o}$), for a 12-blade wheel with a blade immersion depth of 0.30 inch

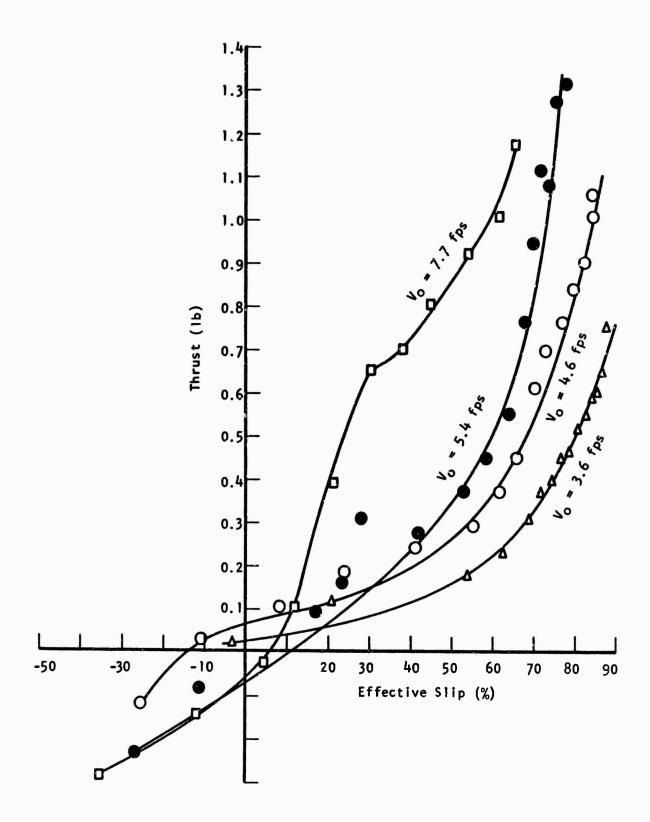


FIGURE 20. THRUST VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL AND A BLADE IMMERSION DEPTH OF 0.8C INCH

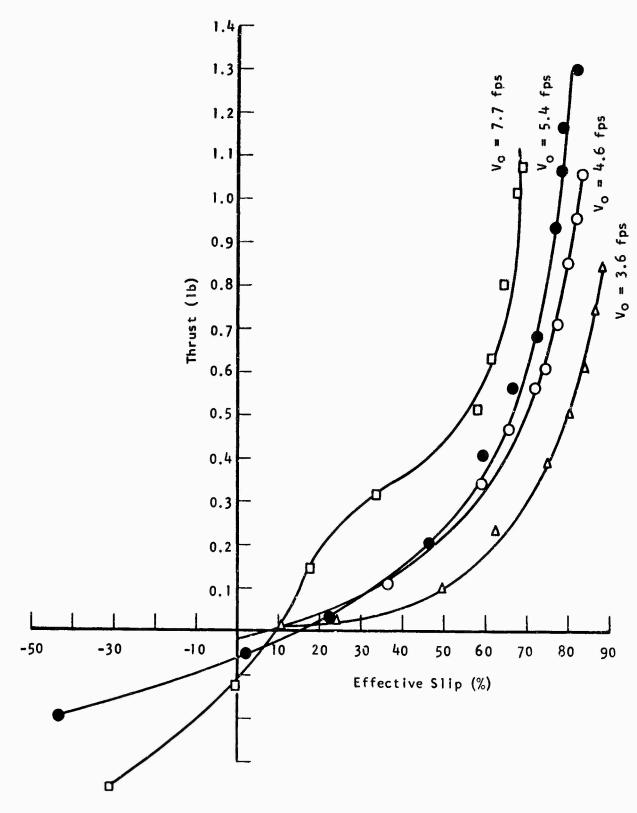


FIGURE 21. THRUST VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($\rm V_O$), FOR A 12-BLADE WHEEL AND A BLADE IMMERSION DEPTH OF 0.80 INCH

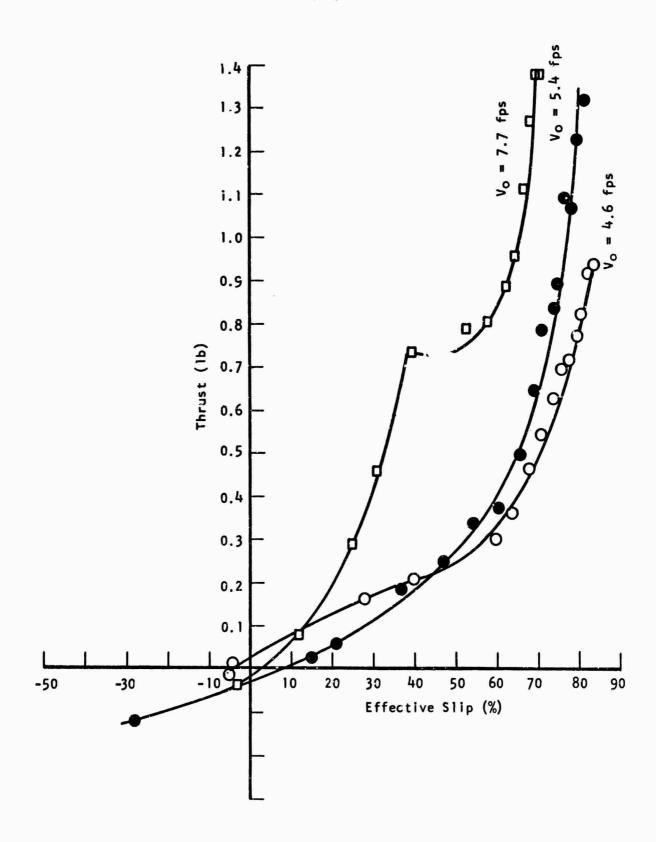


FIGURE 22. THRUST VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (v_o), FOR A 6-BLADE WHEEL AND A BLADE IMMERSION DEPTH OF 0.50 INCH

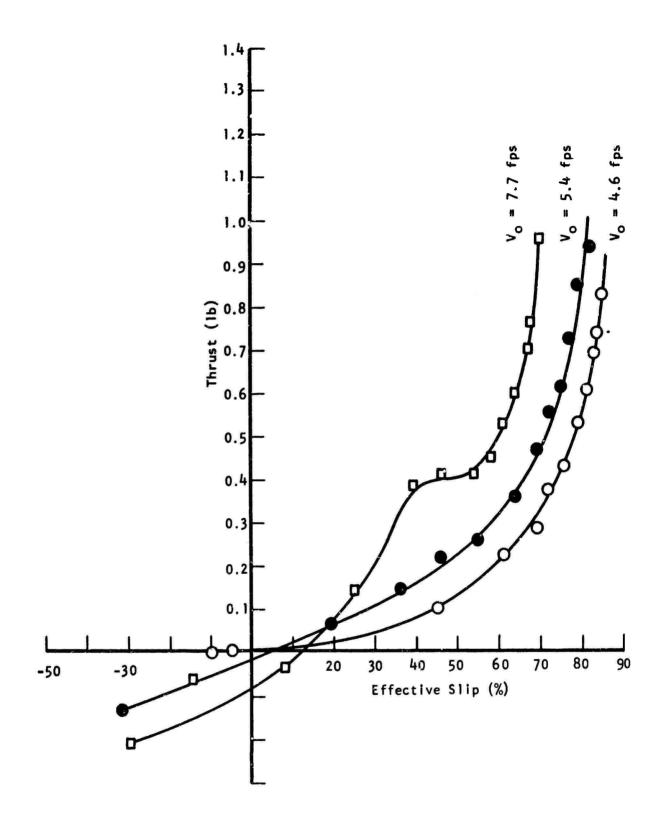


FIGURE 23. THRUST VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 12-BLADE WHEEL AND A BLADE IMMERSION DEPTH OF 0.50 INCH

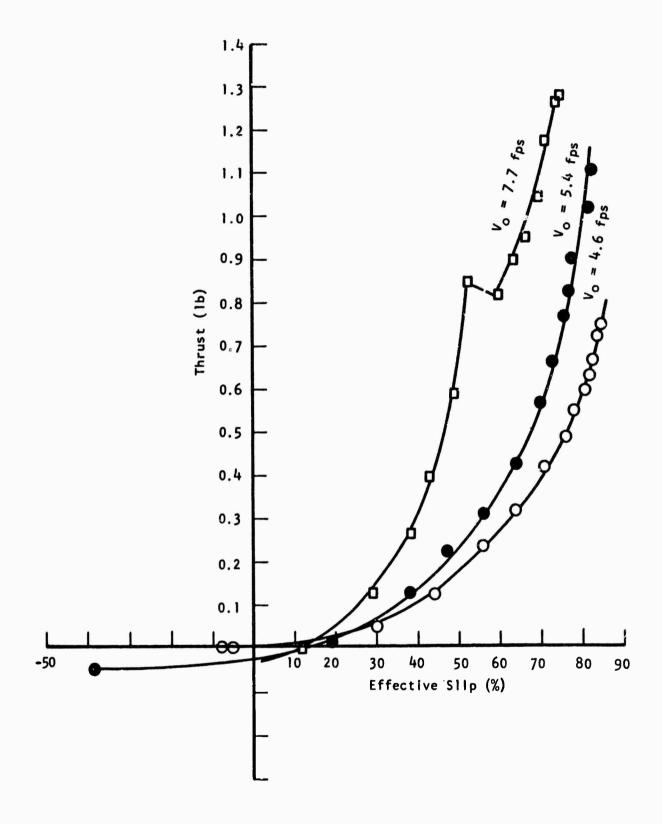


FIGURE 24. THRUST VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (v_o), FOR A 6-BLADE WHEEL AND A BLADE IMMERSION DEPTH OF 0.30 INCH

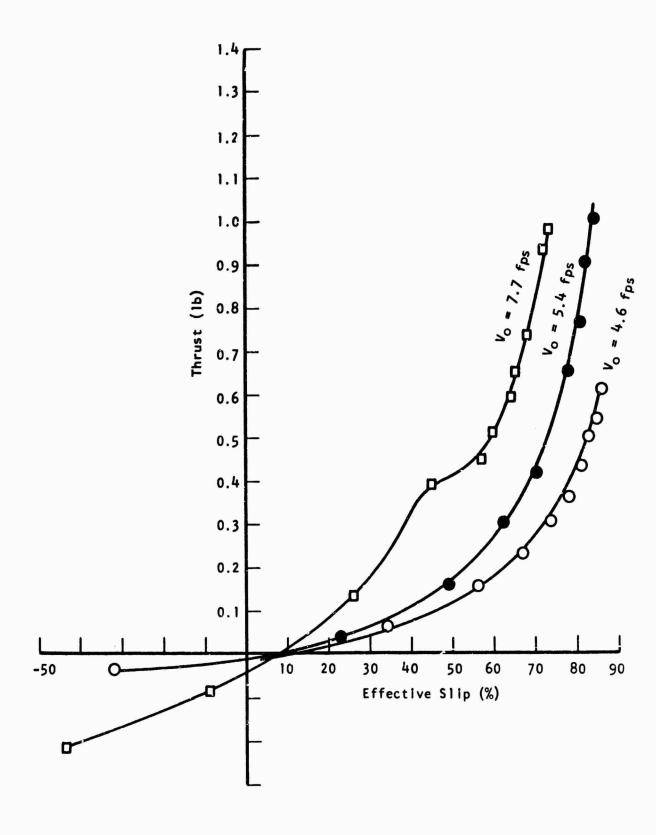


FIGURE 25. THRUST VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($\rm V_{o}$), FOR A 12-BLADE WHEEL AND A BLADE IMMERSION DEPTH OF 0.30 INCH

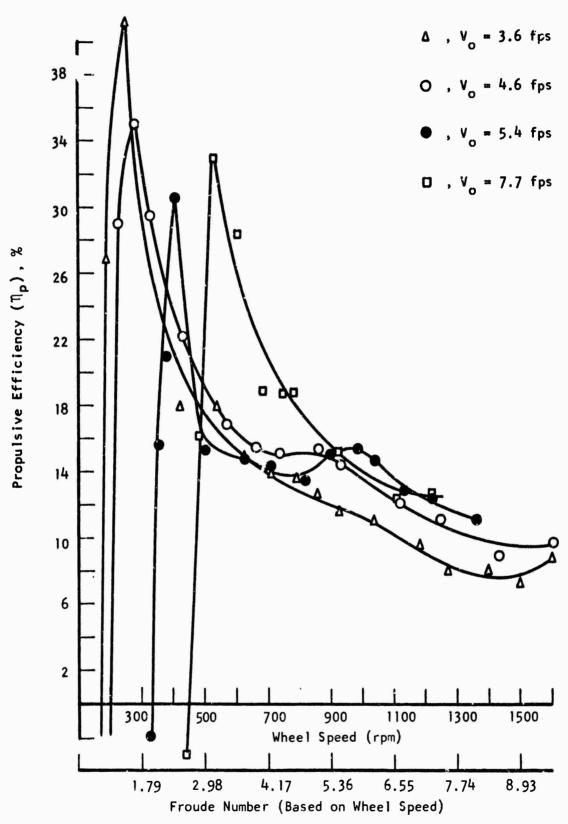


FIGURE 26. PROPULSIVE EFFICIENCY VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (v_o), FOR A 6-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.80 INCH

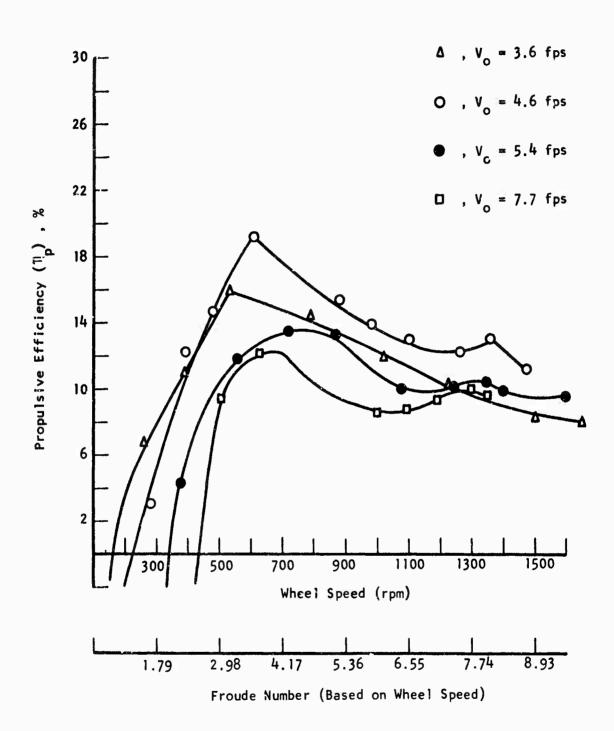


FIGURE 27. PROPULSIVE EFFICIENCY VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($\rm V_{o}$), FOR A 12-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.80 INCH

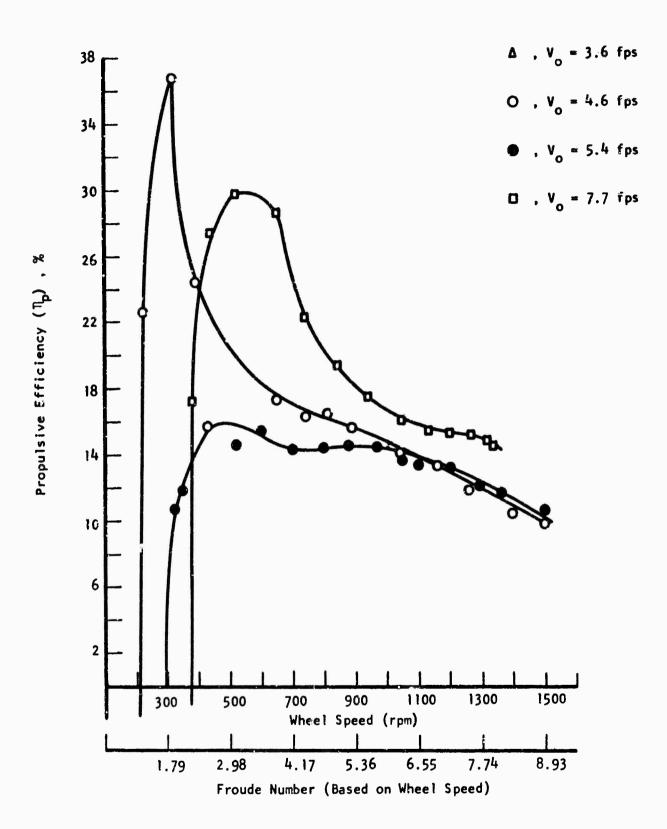


FIGURE 28. PROPULSIVE EFFICIENCY VERSUS WHEEL SPIED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.50 INCH

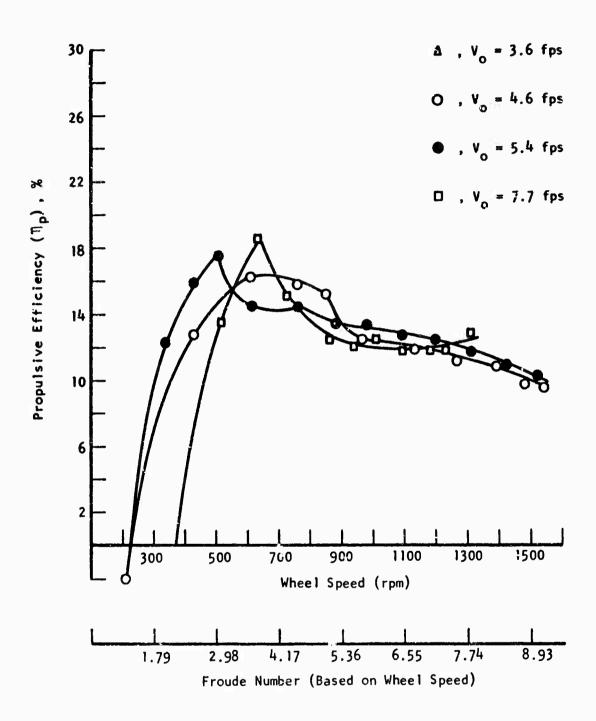


FIGURE 29. PROPULSIVE EFFICIENCY VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 12-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.50 INCH

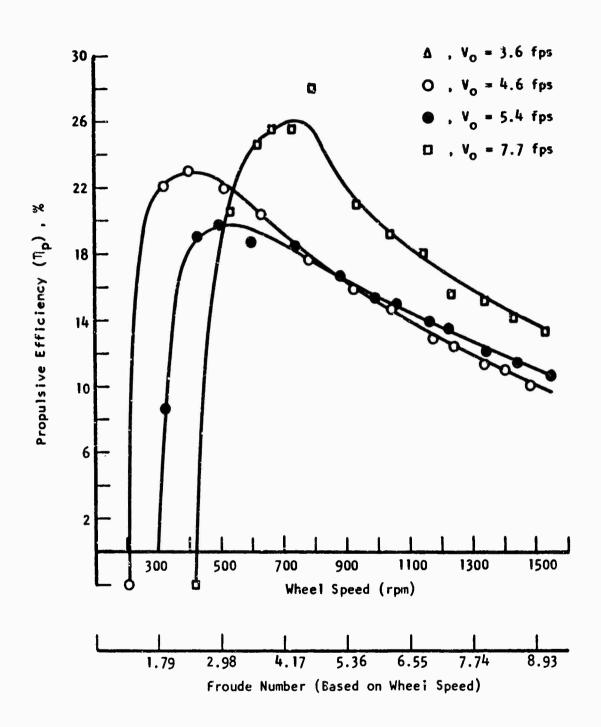


FIGURE 30. PROPULSIVE EFFICIENCY VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.30 INCH

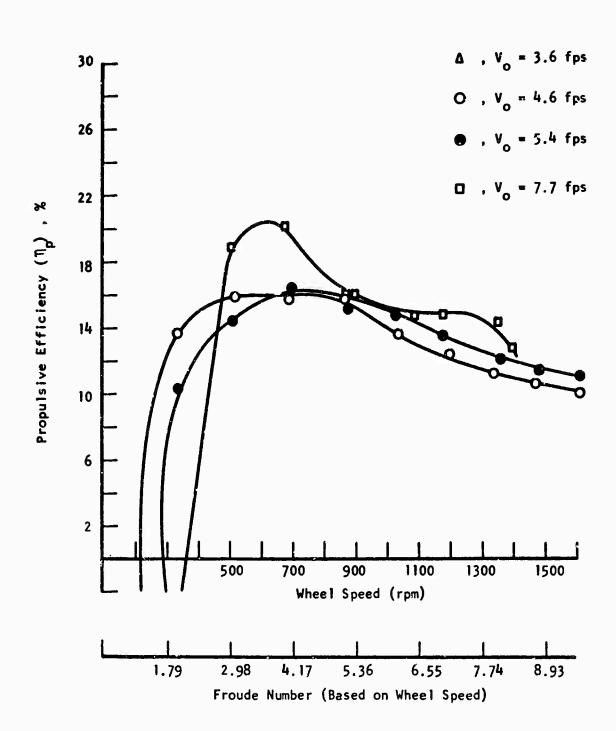


FIGURE 31. PROPULSIVE EFFICIENCY VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (v_o), FOR A 12-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.30 INCH

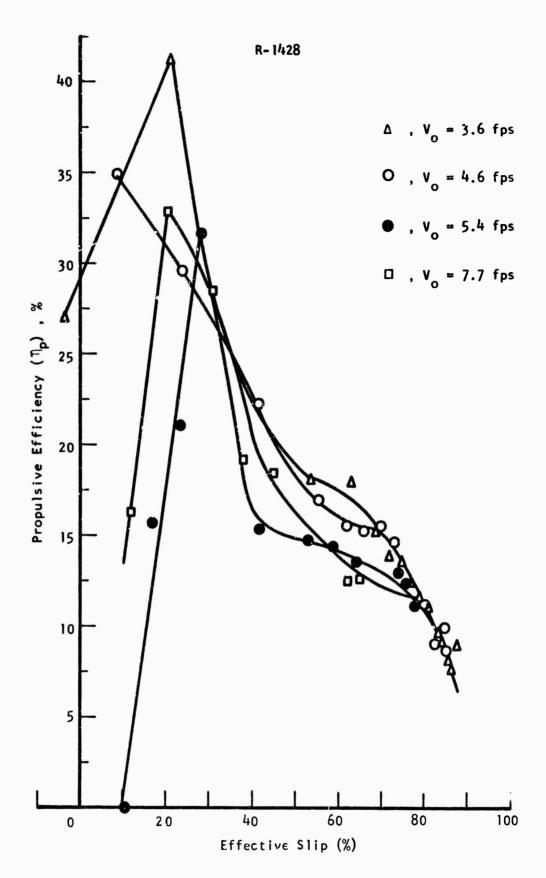


FIGURE 32. PROPULSIVE EFFICIENCY VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($\rm V_{o}$), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

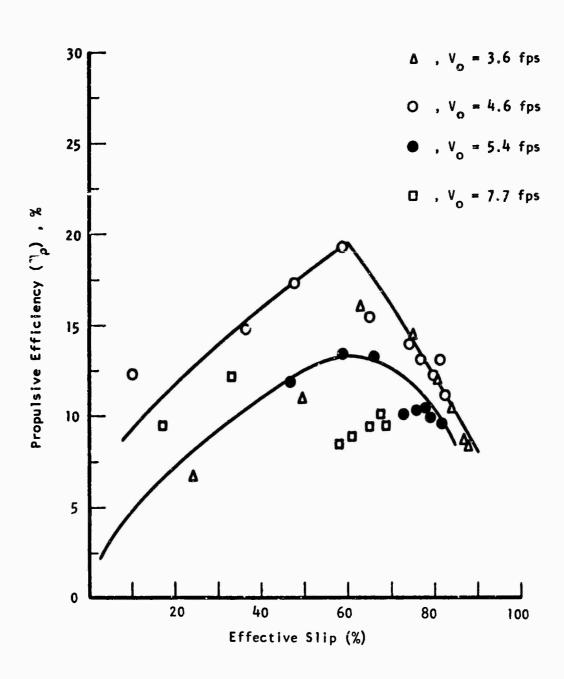


FIGURE 33. PROPULSIVE EFFICIENCY VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

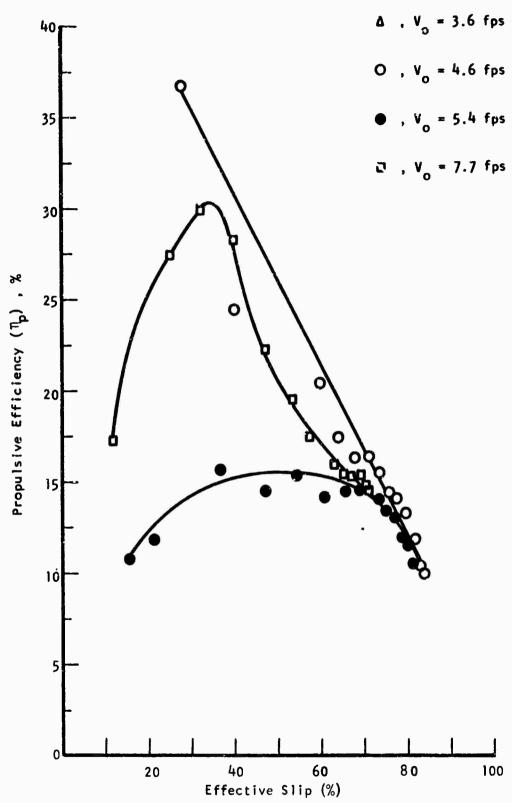


FIGURE 34. PROPULSIVE EFFICIENCY VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES ($V_{\rm O}$), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

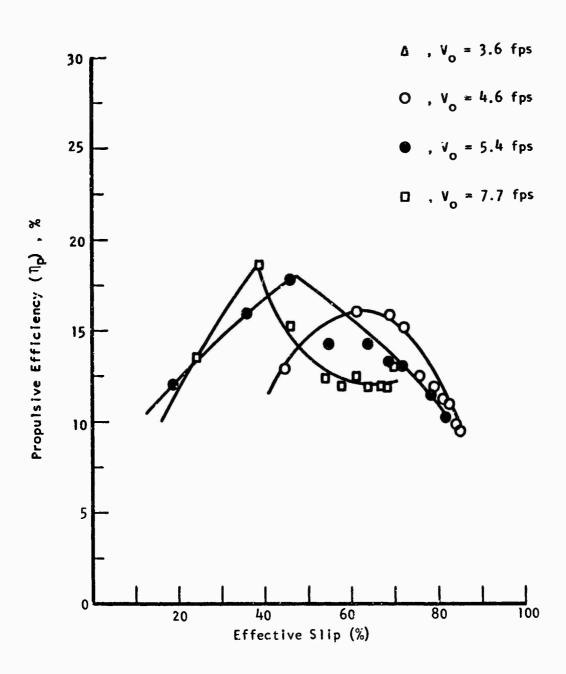


FIGURE 35. PROPULSIVE EFFICIENCY VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (Vo), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

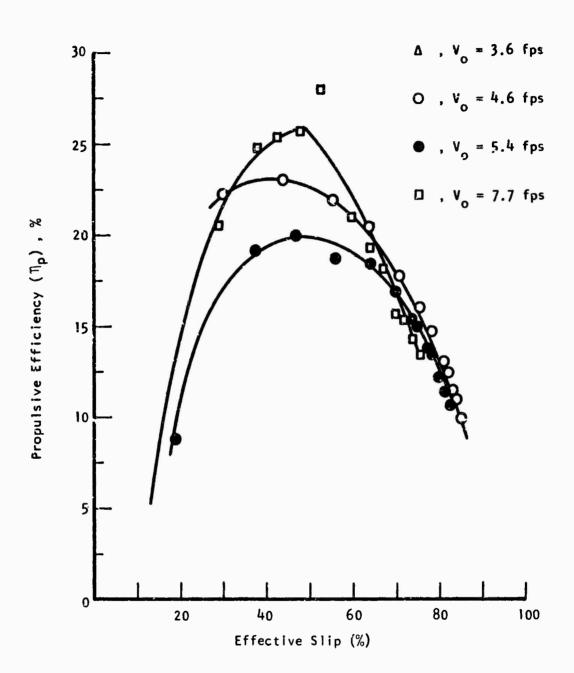


FIGURE 36. PROPULSIVE EFFICIENCY VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (Vo), FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

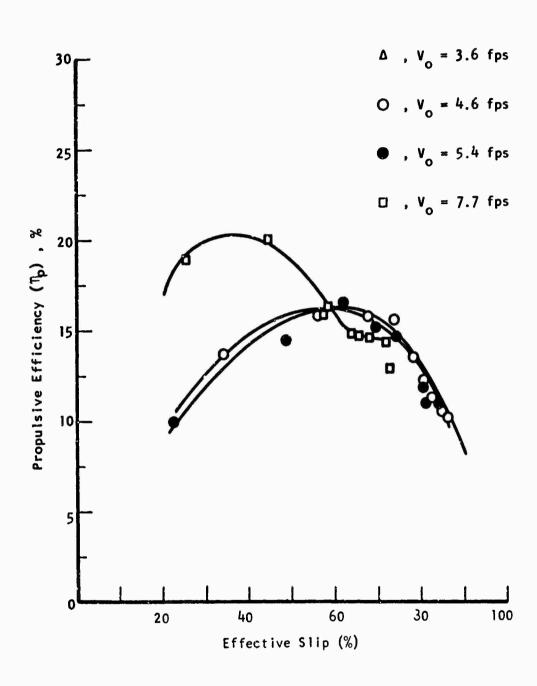


FIGURE 37. PROPULSIVE EFFICIENCY VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (V_{o}), FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

FIGURE 38. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T , K_Q) VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (V_O), FOR A 6-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.80 INCH

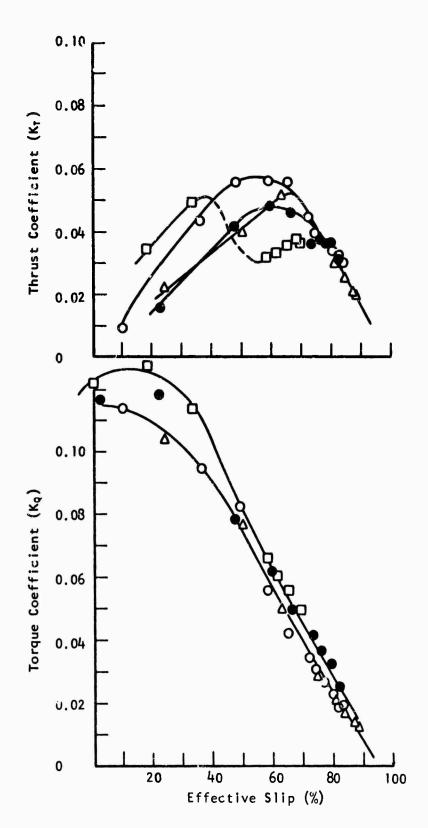


FIGURE 39. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS EFFECTIVE SLIP FCR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 12-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.80 INCH

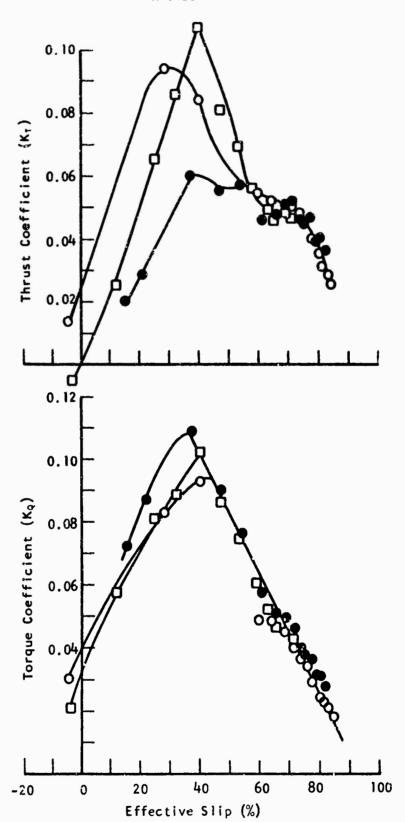


FIGURE 40. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 6-9LADE WHEEL WITH AN IMMERSION DEPTH OF 0.50 INCH

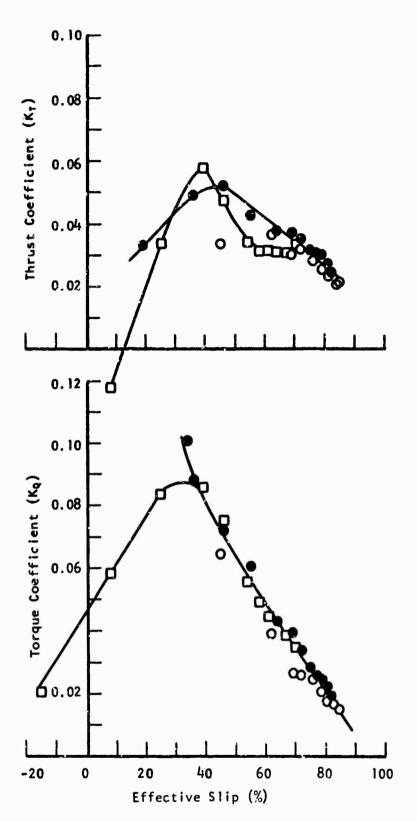


FIGURE 41. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 12-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.50 INCH

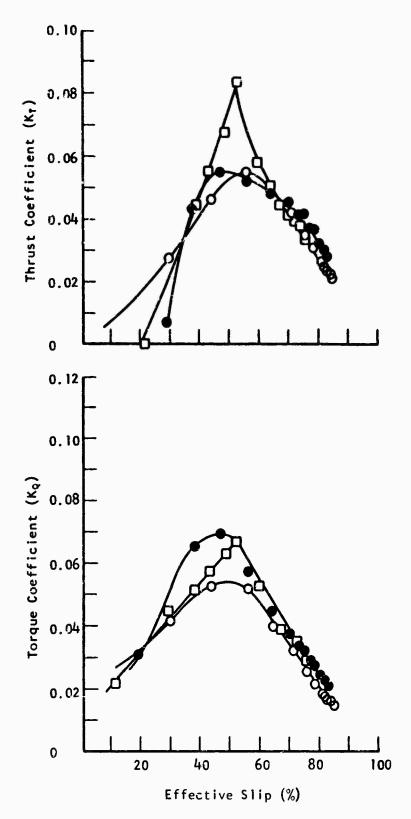


FIGURE 42. WHEEL THRUST AND TORQUE COEFFICIENTS (K_1,K_q) VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (V_0) , FOR A 6-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.30 INCH

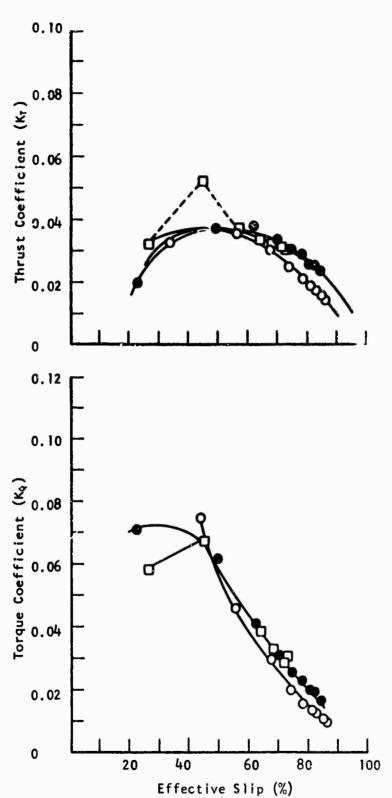


FIGURE 43. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T , K_Q) VERSUS EFFECTIVE SLIP FOR VARIOUS ADVANCE VELOCITIES (V_O), FOR A 12-BLADE WHEEL WITH AN IMMERSION DEPTH OF 0.30 INCH

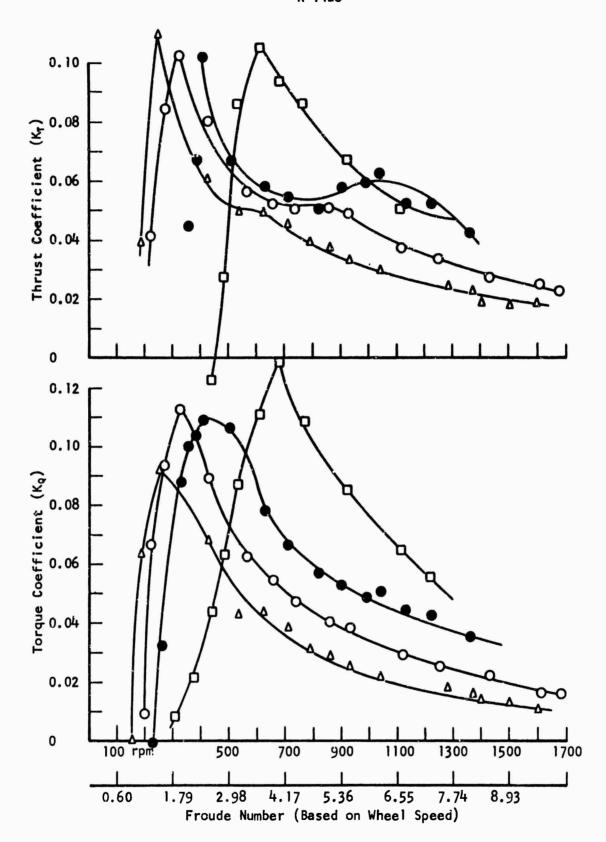


FIGURE 44. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

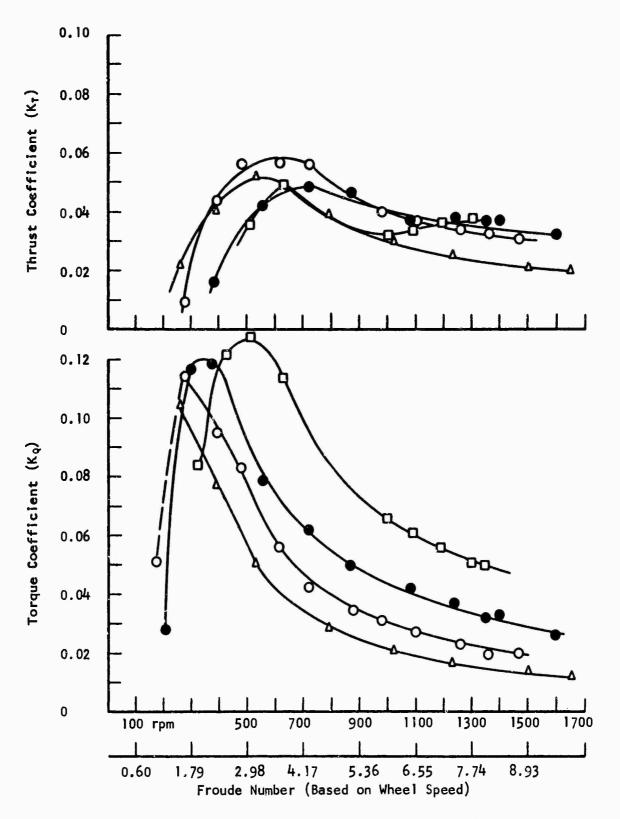


FIGURE 45. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.80 INCH

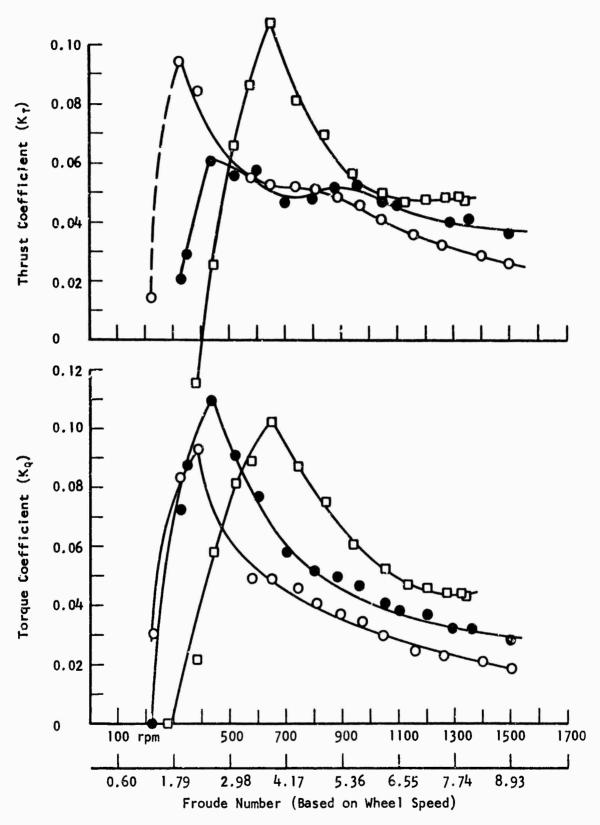


FIGURE 46. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

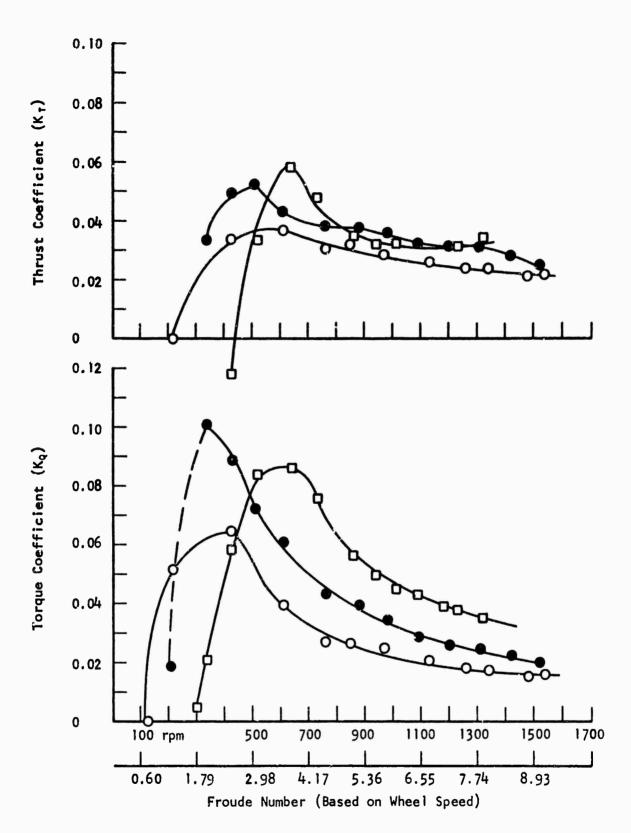


FIGURE 47. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.50 INCH

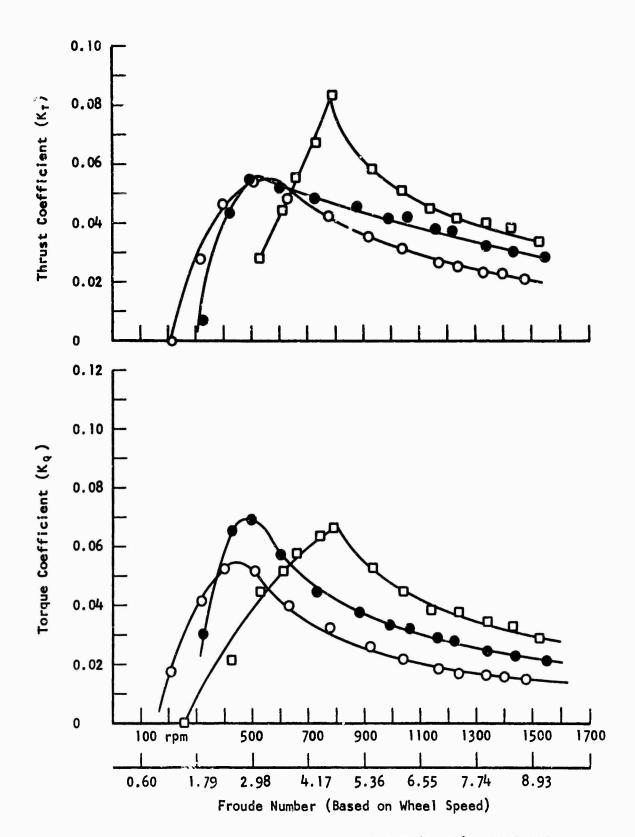


FIGURE 48. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 6-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

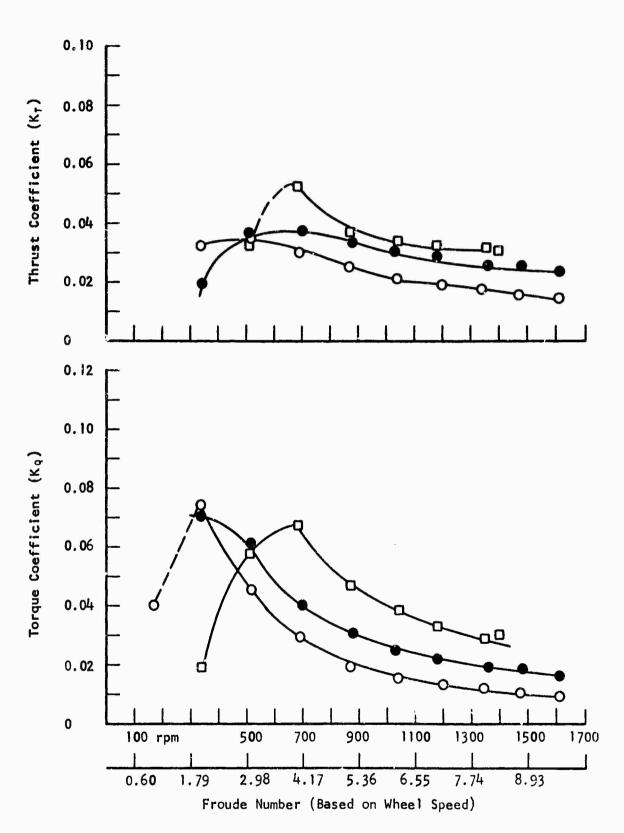


FIGURE 49. WHEEL THRUST AND TORQUE COEFFICIENTS (K_T,K_Q) VERSUS WHEEL SPEED AND FROUDE NUMBER FOR VARIOUS ADVANCE VELOCITIES (V_O) , FOR A 12-BLADE WHEEL WITH A BLADE IMMERSION DEPTH OF 0.30 INCH

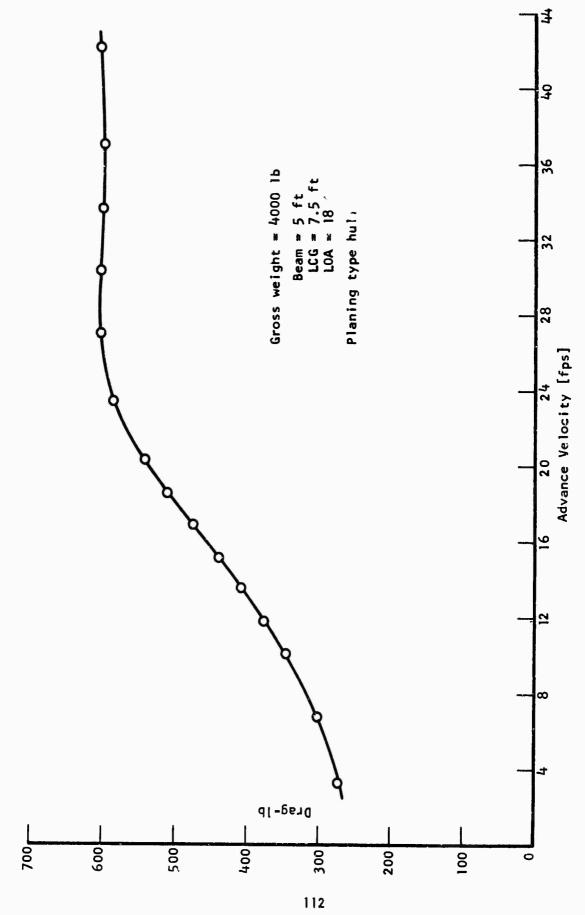
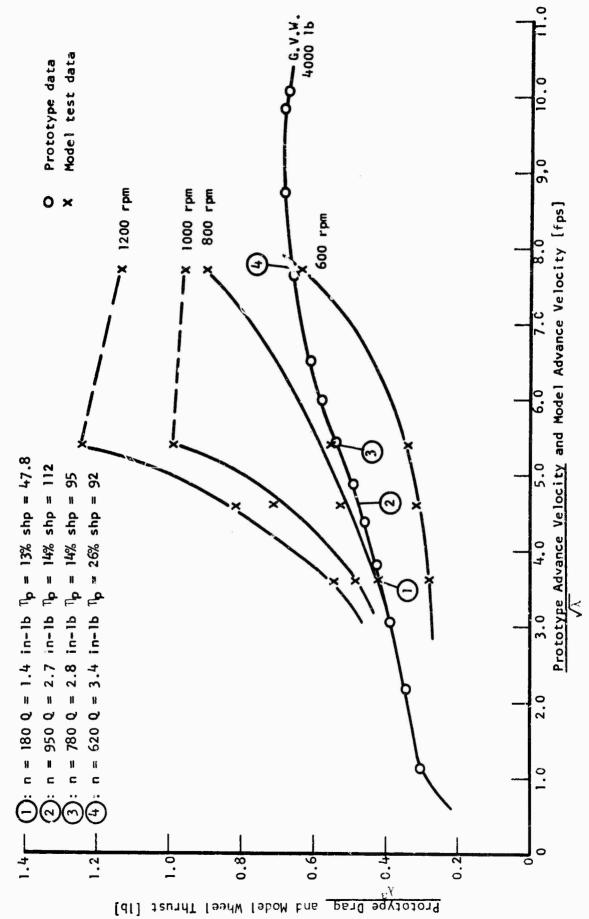
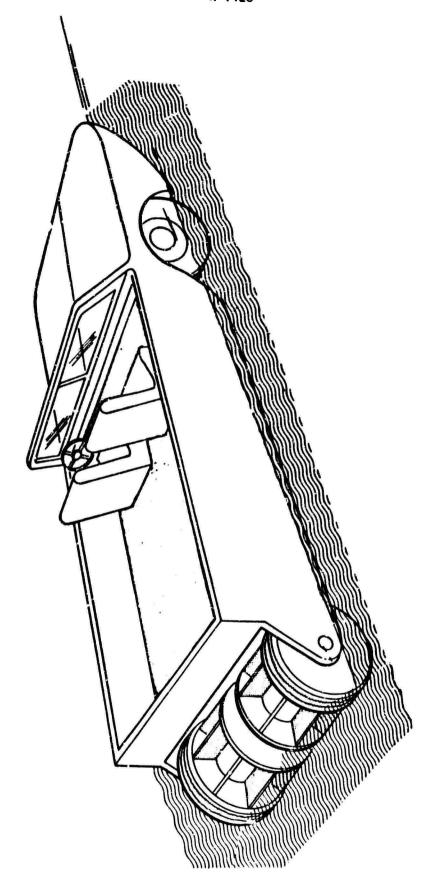




FIGURE 50. DRAG VERSUS ADVANCE VELOCITY FOR A PROTOTYPE VEHICLE WITH A PLANING HULL

REDUCED DRAG CURVE OF PROTOTYPE VEHICLE WITH SOME MODEL TEST DATA SHOWN FOR PERFORMANCE MATCHING FIGURE 51.

SIMPLIFIED CONCEPT DRAWING OF A HIGH SPEED AMPHIBIOUS RECONNAISSANCE VEHICLE UTILIZING A PADDLE WHEEL PROPULSION SYSTEM, NOTE THAT FRONT WHEELS ARE RETRACTABLE FOR MAXIMUM WATER SPEED AND REASONABLE OFF-ROAD PERFORMANCE FIGURE 52.

Security Classification					
DOCUMENT CONT	ROL DATA - R	5 D			
Security classification of fille, hody of obstract and indexing	metation must be s		المحارث والمسترين والمسترين والمسترين والمسترين		
I GRIGINA "'YG ACTIVITY (Corporate nuther)			CURITY CLASSIFICATION		
Bavidson Laboratory, Stevens Institute of	Technology UNCLASSIFIED				
Hoboken, New Jersey 07030		26. GROUP			
		i			
I REPORT TITLE	,				
A MODEL STUDY OF THE HYDRODYNAMIC CI	HARACTERISTI	CS OF A SE	RIES OF		
PADDLE-WHEEL PROPULSIVE DEVICES FOR	HIGH-SPEED	CRAFT			
4 DESCRIPTIVE NOTES (Type of report and inclusive delea)					
Final Report					
5 AUTHORISI (First name, middle initial, izel name)					
Gilbert A. Wray and James A. Starres	++				
direct A. widy and James M. Staire					
MEPORY DATE	TO. TOTAL NO. OF PAGES		76, NO. OF MEFS		
June 1970	114		11		
SO. CONTRACT OR GRANT NO.	SS. ORIGINATOR'S REPORT NUMBERISE				
DAAE-07-69-0356	SIT-DL-70-1428				
A. PROJECT NO.		,			
~ C					
ε,	A 07455 8580	NT NO. 21 (4-2- 21	ter avales that are to acclosed		
•	9b. OTHER REPORT NOISE (Any other numbers that may be assigned this report)				
d.	<u></u>				
This document has been	approved fo	r public re	eiease and saie; its		
distribution is unlimited. Application for	copies may	be made to	the Defense		
Documentation Center, Cameron Station, 5010	Duke St. A	lexandria	Va. 22314 Reproducti		
of the document in whole or in part is permi	itted for an	v nuchase 4	of the II C Covernment		
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTIV	ALLA M. 3 MANAGEMENT		
	Dana - t	of D-4			
	Department Washington	or verense	201		
	-asimigton	, 0. 6. 20	U) U I		
13. 403TRECT	L				
TAN THE I THE I					

This report covers an investigation of the hydrodynamic characteristics of a series of scale models of paddle wheels with fixed radial blades, designed for speeds in excess of 20 knots.

The results indicate that a six-bladed wheel has higher propulsive efficiency and thrust than a tweive-biaded theei. Peak efficiency is in the neighborhood of 41 percent and occurs at slip values of 30 to 40 percent. Thrust increases with immersion depth, within the range tested (i6 percent of the wheel diameter immersed). There is a slight break in the thrust curve over a span of 10-percent slip, after which the thrust again increases with increasing slip.

There is evidence of scale distortion, and it is feit that the present model, with a scale factor of 8.5 to i, may have been too small.

DD FORM 1473 (PAGE 1)

UNCLASSIFIED

S/N 0101-807-6811

UNCLASS IF LED

Security Classification							
14 MET WORDS	LINK A		LINK B		LIN4 C		
	HOLE	# 1	HOLE	wT	ROLE	#1	
Hydrodynamics Amphibians Paddle Wheels					ĺ		
Amphibians							
Paddle Wheels							
Propulsion							
					1		
					}		
			1			1	
]				
			ł				
	i		ł				
	l		ł	ł	l		
	ļ			l	i		
	1		•	l	1		
	l			i	l		
		!		l]		
]		i				
	Į	İ			l		
		l		•			
	ļ	ļ		Ì	1		
					1	İ	
	ļ		1	l	1		
				Ī			
		Į					
	1		Į				
			ł				
			1				
			[
					1		
					l		
					1		
		بيونيون					

DD FORM 1473 (BACK)
5/N 0101-607-6621

UNCLASSIFIED

Security Classification

A-31409